Under the perspectives of circular economy, coupling waste management and environmental engineering to foster sustainable pollution control solutions has gained particular attention. Particularly in constructed wetlands (CWs) as a nature-based solution, recycling various wastes as substrates for enhancing the removal of various pollutants have become a recent hotspot in recent years. In this review, physicochemical properties, enhanced removal performance and mechanism of various pollutants, and potential risks of waste-derived substrates including industrial and municipal wastes, agricultural by-products, and waste synthetic substrates were summarized comprehensively.
View Article and Find Full Text PDFMicro(nano)plastics (MPs) in aquatic environments can disrupt wastewater treatment, particularly nitrogen removal in constructed wetlands (CWs). However, their broader effects on microbial and plant nitrogen metabolism remain unclear. This study investigated the effects of different-sized MPs (4 mm, 100 µm, and 100 nm) on nitrogen transformation in CWs.
View Article and Find Full Text PDFGreen tides, particularly those induced by Enteromorpha, pose significant environmental challenges, exacerbated by climate change, coastal eutrophication, and other anthropogenic impacts. More concerningly, these blooms may influence the spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) within ecosystems. However, the manner in which Enteromorpha blooms affect the distribution and spread of antimicrobial resistance (AMR) remains uncertain.
View Article and Find Full Text PDFPoly- and perfluoroalkyl substances (PFAS) are widespread emerging contaminants in aquatic environments, raising serious concerns due to their persistence and potential toxicity to both human health and ecosystems. Treatment wetlands (TWs) provide a sustainable, low-carbon solution for PFAS removal by harnessing the combined actions of substrates, plants, and microorganisms. This review evaluates the effectiveness of TWs in PFAS treatment, emphasizing their role as a post-treatment option for conventional wastewater treatment plants.
View Article and Find Full Text PDFConstructed wetlands (CWs) are identified as significant ecological systems for the potential control of antibiotic resistance genes (ARGs) in the environment. However, the precise mechanisms governing removal, persistence, expression, and associated risks of ARGs during wetland treatment remain poorly understood. In this study, the distribution, mobility, expression, and hosts of ARGs in water, sediments, and plants of a field-scale CW and its parallel natural river were systematically investigated through metagenomic and metatranscriptomic approaches.
View Article and Find Full Text PDFBackground: Neutrophil extracellular trap (NET) is associated with host response, tumorigenesis, and immune dysfunction. However, the link between NET and the tumor microenvironment (TME) of gastric cancer (GC) remains unclear. Our study aims to characterize the expression patterns of NET-related genes and their relationships with clinicopathological characteristics, prognosis, TME features, and immunotherapy efficacy in GC cohorts.
View Article and Find Full Text PDFThis research investigated the distribution, sources, and ecological risks of polycyclic aromatic hydrocarbons (PAHs) in the Yellow River Delta (YRD), China, emphasizing the response of soil microorganisms. The study involved quantitative analyses of 16 PAHs specified by the U.S.
View Article and Find Full Text PDFThe presence of nanoplastics (NPs) in wastewater poses a considerable risk to ecosystems. Although constructed wetlands (CWs) have the potential to removal NPs, their efficiency is limited by insufficient consideration of ecosystem integrity. Herein, three typical benthic fauna (Corbicula fluminea, Chironomus riparius and Tubifex tubifex) were added to CWs to improve the ecological integrity of CWs, and further enhance the ecological benefits.
View Article and Find Full Text PDFThe characteristics and dynamics of micro-plastisphere biofilm on the surface of microplastics (MPs) within artificial ecosystems, such as constructed wetlands (CWs), remain unclear, despite these ecosystems' potential to serve as sinks for MPs. This study investigates the dynamic evolution of micro-plastisphere biofilm in CWs, utilizing simulated wastewater containing sulfamethoxazole and humic acid, through physicochemical characterization and metagenomic analysis. Two different types of commercial plastics, including non-degradable polyethylene and degradable polylactic acid, were shredded into MPs and studied.
View Article and Find Full Text PDFConstructed wetlands have been widely employed as a cost-effective and environmentally friendly alternative for treating primary and secondary sewage effluents. In this study, biochar and pyrite were utilized as electron donor substrates in intermittent-aerated vertical flow constructed wetlands to strengthen the nutrient and heavy metals removal simultaneously, and the response of nutrient reduction and microbial community to heavy metals stress was also explored. The results indicated that biochar addition exhibited a better nitrogen removal, while pyrite addition greatly promoted the phosphorus removal.
View Article and Find Full Text PDFThe induction of viable but nonculturable (VBNC) bacteria with cellular integrity and low metabolic activity by chemical disinfection causes a significant underestimation of potential microbiological risks in drinking water. Herein, a physical CoO nanowire-assisted electroporation (NW-EP) was developed to induce cell damage via the locally enhanced electric field over nanowire tips, potentially achieving effective inhibition of VBNC cells as compared with chemical chlorination (Cl). NW-EP enabled over 5-log removal of culturable cell for various G+/G- bacteria under voltage of 1.
View Article and Find Full Text PDFhas been identified as a participant in integrin-linked kinase signaling pathways, influencing epithelial-mesenchymal transition and thereby affecting tumor initiation, progression, and invasion. While the character of in the tumor microenvironment (TME) as well as its implications for immunotherapy remain unclear. Thus, we conducted a comprehensive analysis to assess the prognostic significance of using Kaplan-Meier analysis.
View Article and Find Full Text PDFPhosphine (PH) is an important contributor to the phosphorus cycle and is widespread in various environments. However, there are few studies on PH in constructed wetlands (CWs). In this study, lab-scale CWs and batch experiments were conducted to explore the characteristics and mechanisms of PH production in sulfur-based CWs.
View Article and Find Full Text PDFNanoplastics (NPs) in wastewaters may present a potential threat to biological nitrogen removal in constructed wetlands (CWs). Iron ions are pivotal in microbially mediated nitrogen metabolism, however, explicit evidence demonstrating the impact of NPs on nitrogen removal regulated by iron utilization and metabolism remains unclear. Here, we investigated how NPs disturb intracellular iron homeostasis, consequently interfering with the coupling mechanism between iron utilization and nitrogen metabolism in CWs.
View Article and Find Full Text PDFSingle-nucleotide polymorphism (SNP) is one of the core mechanisms that respond to antibiotic resistance of Escherichia coli (E. coli), which is a major issue in environmental pollution. A specific type of SNPs, synonymous SNPs, have been generally considered as the "silent" SNPs since they do not change the encoded amino acid.
View Article and Find Full Text PDFBisphenol A (BPA) in seawater tends to be deposited in coastal sediments. However, its degradation under tidal oscillations has not been explored comprehensively. Hydroxyl radicals (·OH) can be generated through Fe cycling under redox oscillations, which have a strong oxidizing capacity.
View Article and Find Full Text PDFJ Phys Chem A
February 2024
Iodomethane and bromomethane (CHI/CHBr) are common chemicals, but their chemistry on nanometals is not fully understood. Here, we analyze the reactivity of Rh ( = 3-30) clusters with halomethanes and unveil the spin effect and concentration dependence in the C-H and C-X bond activation. It is found that the reactions under halomethane-rich conditions differ from those under metal-rich conditions.
View Article and Find Full Text PDFThe use of iron-manganese oxide (FMO) as a promising amendment for remediating arsenic (As) contamination in soils has gained attention, but its application is limited owing to agglomeration issues. This study aims to address agglomeration using surfactant-modified FMO and investigate their stabilization behavior towards As and resulting environmental changes upon amendments. The results confirmed the efficacy of surfactants and demonstrated that cetyltrimethylammonium-bromide-modified FMO significantly reduced the leaching concentration of As by 92.
View Article and Find Full Text PDFConstructed wetlands (CWs) are reservoirs of microplastics (MPs) in the environment. However, knowledge about the impact of MPs on antibiotic removal and the fate of antibiotic resistance genes (ARGs) is limited. We focused on sulfamethoxazole (SMX) as a representative compound to examine the effects of MPs on SMX removal and the proliferation and dissemination of two SMX-related ARGs (sul1 and sul2) in vertical subsurface-flow CW (VFCW) microcosm.
View Article and Find Full Text PDFNitrous oxide (NO) emission during the sewage treatment process is a serious environmental issue that requires attention. However, the NO emission in constructed wetlands (CWs) as affected by different nitrogen forms in influents remain largely unknown. This study investigated the NO emission profiles driven by microorganisms in CWs when exposed to two typical nitrogen sources (NH-N or NO-N) along with different carbon source supply (COD/N ratios: 3, 6, and 9).
View Article and Find Full Text PDFWastewater treatment with microalgae is an ecologically sustainable process. In this study, the growth characteristics, nutrient removal, and spectral changes of dissolved organic matter (DOM) in microalgae bioreactors were investigated for treating low C/N ratio wastewater under different disturbance modes (agitation and aeration) and carbon sources (sucrose and humic acid). The results showed that the biomass and chlorophyll-a contents of Scenedesmus obliquus in the aeration condition (725.
View Article and Find Full Text PDF