Publications by authors named "Haiming Song"

Antimicrobial biodegradable packaging is in high demand as a one-two punch against microbiological and plastic hazards. Two quaternary ammonium salts (QAS) with different N-alkyl chain lengths were used for starch/poly (butylene adipate-co-terephthalate) (PBAT) blown antimicrobial films. Dioctadecyl dimethyl ammonium chloride (D1821) contributed to a homogeneous film morphology at 5% w/w level, while micro-pores occurred with didodecyl dimethyl ammonium chloride (D1221).

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) is a serious progressive fibrotic disease that is characterized by excessive accumulation of extracellular matrix (ECM), thus resulting in stiff lung tissues. Lysyl oxidase (LOX) is an enzyme involved in fibrosis by catalyzing collagen cross-linking. Studies found that the ingredients in schisandra ameliorated bleomycin (BLM)-induced PF, but it is unknown whether the anti-PF of schisandra is related to LOX.

View Article and Find Full Text PDF

Dual pH- and thermo-responsive polysulfone (PSf) membranes with three-dimensionally interconnected networks are fabricated by introducing poly(acrylic acid-co-N-isopropylacrylamide) (P(AA-NIPAm)) into the membrane surfaces and pore walls during membrane formation via a vapor-liquid induced phase separation (V-LIPS) process. After introducing the copolymers of P(AA-NIPAm), the fabricated membranes exhibit impressive open network pores on the surfaces, meanwhile their cross-sectional structure turns from classical asymmetric finger-like structure into bi-continuous nanopores throughout the whole thickness of membrane, due to high solution viscosity and low mass transfer rate of VIPS process. Furthermore, pure water permeation tests show that the pure water permeation (L) and the molecular weight cutoff (MWCO) of the fabricated PSf/P(AA-NIPAm) membranes increases sharply as the solution pH decreases from 12.

View Article and Find Full Text PDF

In situ pegylated (PEGylated) microporous membranes have been extensively reported using poly(ethylene glycol) (PEG)-based polymers as blending additives. Alternatively, free standing PEGylated polysulfone (PSf) membranes with excellent hydrophilicity and antifouling ability were directly fabricated from polysulfone/poly(ethylene glycol) methyl ether methacrylate (PSf/PEGMA) solutions after in situ cross-linking polymerization without any treatment via vapor induced phase separation (VIPS) process for the first time. The microstructures and performances of the resulting membranes shifted regularly by adjusting exposure time of the liquid film in humid air.

View Article and Find Full Text PDF

Polysulfone (PSf) membrane has been widely used in water separation and purification, although, membrane fouling is still a serious problem limiting its potential. We aim to improve the antifouling of PSf membranes via a very simple and efficient method. In this work, antifouling PSf membranes were fabricated via in situ cross-linked polymerization coupled with non-solvent induced phase separation.

View Article and Find Full Text PDF

Poly(vinyl pyrrolidone) (PVP) and its copolymers have been widely employed for the modification of hemodiafiltration membranes due to their excellent hydrophilicity, antifouling and hemocompatibility. However, challenges still remain to simplify the modification procedure and to improve the utilization efficiency. In this paper, antifouling and hemocompatibility polysulfone (PSf) hemodiafiltration membranes were fabricated via in situ cross-linked polymerization of vinyl pyrrolidone (VP) and vinyltriethoxysilane (VTEOS) in PSf solutions and non-solvent induced phase separation (NIPS) technique.

View Article and Find Full Text PDF

Endoplasmic reticulum stress (ERS) in adipocytes can modulate adipokines secretion. The aim of this study was to explore the protective effect of high-density lipoprotein (HDL) on oxidized low-density lipoprotein (ox-LDL)-induced ERS-C/EBP homologous protein (CHOP) pathway-mediated adipokine secretion. Our results showed that serum adipokines, including visfatin, resistin and TNF-α, correlated inversely with serum HDL cholesterol level in patients with abdominal obesity.

View Article and Find Full Text PDF

This article reported the electrochemical behaviors of a novel hollow carbon microspheres/manganese dioxide nanosheets (micro-HC/nano-MnO) composite prepared by an in situ self-limiting deposition method under hydrothermal condition. The results of scanning electron microscopy reveal that MnO nanosheets homogeneously grow onto the surface of micro-HC to form a loose-packed microstructure. The quantity of MnO required in the electrode layer has thereby been reduced significantly, and higher specific capacitances have been achieved.

View Article and Find Full Text PDF

Comb-like amphiphilic copolymers (CLACs) consisting of functional chains of poly(vinyl pyrrolidone) and polyethersulfone-based hydrophobic chains were firstly synthesized by reversible addition-fragmentation chain transfer polymerization. The CLAC can be used as an additive to blend with polyethersulfone (PES) at any ratio due to the excellent miscibility, and then a surface segregation layer with permanent hydrophilicity could be obtained. The surfaces of the CLAC modified PES membranes were characterized using X-ray photoelectron spectroscopic analysis, Fourier transform infrared and water contact angle measurements.

View Article and Find Full Text PDF

While polyethersulfone (PES) membrane represents a promising option for blood purification, the blood compatibility must be dramatically enhanced to meet today's ever-increasing demands for many emerging application. In this study, we report a bionic design for optimization and development of a modified PES membrane combining hydrophilic and negative charged biological macromolecules on its surface. The hydrophilic and ionic charged biological macromolecules sulfonated poly(styrene)-b-poly(methyl methacrylate)-b-poly-(styrene) (PSSMSS) and poly(vinyl pyrrolidone)-b-poly(methyl methacrylate)-b-poly-(vinyl pyrrolidone) were synthesized via reversible addition-fragmentation chain transfer polymerization and used together to modify PES membranes by blending method.

View Article and Find Full Text PDF

A simple method to prepare modified polyethersulfone (PES) membrane by one-pot is provided, and the method includes three steps: polymerization of vinyl pyrrolidone (VP), copolymerization of methyl methacrylate (MMA) and blending with PES. The effect of the PMMA segment length and molecular weight of the copolymer (PVP-b-PMMA-b-PVP, as an additive) on the structures and properties of the modified membranes was investigated. Activated partial thromboplastin time (APTT) tests indicated that with the increase of the poly(methyl methacrylate) (PMMA) segment length in the chains of the copolymers and with the increase of the molecular weight of the copolymers, the APTTs of the modified membranes increased to some extent, since less of the additives were lost during liquid-liquid phase separation process.

View Article and Find Full Text PDF