Publications by authors named "Haimei Wu"

Stimuli-responsive hydrogels have the capability to alter their state in response to changes in physiological signals within their application environment, providing distinct benefits in drug delivery applications. Here, the acidic pH typically found in acutely infected wounds can be effectively managed by incorporating a pH-responsive Ag loaded system within the hydrogel, thereby ensuring efficient drug use and preventing potential toxicity from the sudden release of silver ions. The antimicrobial composite hydrogel HAMA/GelMA-CA/Ag provides some tissue adhesion and accelerates wound healing.

View Article and Find Full Text PDF

Benzene, toluene, and xylene (BTX) co-exist in human environments, yet their individual and combined effects on genetic damage at low exposure levels are not fully understood. Additionally, single nucleotide polymorphisms in microRNAs (mirSNPs) might be involved in cancer etiology by affecting the related early health damage. To investigate the influence of BTX exposure, mirSNPs, and their interactions on genetic damage, we conducted a cross-sectional study in 1083 Chinese petrochemical workers, quantifying the BTX cumulative exposure levels and multiple genetic damage biomarkers.

View Article and Find Full Text PDF
Article Synopsis
  • Two novel loci, qKRN2-1 and qKRN2-2, linked to kernel row number (KRN) in maize were mapped on chromosome 2, identifying a key candidate gene (Zm00001d002989) related to KRN variation.
  • The study utilized teosinte as a donor parent and an inbred maize line (Mo17) as the recurrent parent, explaining around 68.79% of the phenotypic variance with these QTLs.
  • Findings highlight the genetic basis of KRN, offering valuable insights for maize breeding to enhance grain yields.
View Article and Find Full Text PDF

Background: Coronary artery disease (CAD) is a major global cardiovascular health threat and the leading cause of death in many countries. The disease has a significant impact in China, where it has become the leading cause of death. There is an urgent need to develop non-invasive, rapid, cost-effective, and reliable techniques for the early detection of CAD using machine learning (ML).

View Article and Find Full Text PDF

Great progress has been made in organic solar cells (OSCs) in recent years, especially after the report of the highly efficient small-molecule electron acceptor Y6. However, the relatively low open circuit voltage () and unbalanced charge mobilities remain two issues that need to be resolved for further improvement in the performance of OSCs. Herein, a wide-band-gap amorphous acceptor IO-4Cl, which possessed a shallower lowest unoccupied molecular orbital (LUMO) energy level than Y6, was introduced into the PM6:Y6 binary system to construct a ternary device.

View Article and Find Full Text PDF

Ferroptosis is a newly discovered iron-dependent form of regulated cell death associated with high levels of hydroxyl radical (˙OH) production. Meanwhile, lysosome dysfunction has been shown to be one of the causes of ferroptosis. Although a variety of ˙OH-responsive fluorescent probes have been developed for detecting intracellular ˙OH in living cells, there are still only few lysosome-targeted probes to monitor the variation in lysosomal ˙OH levels during ferroptosis.

View Article and Find Full Text PDF

Background: Polycyclic aromatic hydrocarbons (PAHs) are well-acknowledged pro-inflammatory chemicals, but their associations with blood cell-based inflammatory biomarkers need further investigation. Moreover, the effects and mechanisms of essential metals on PAH-related inflammation remain poorly understood.

Objects: To elucidate the associations of PAHs on inflammatory biomarkers, as well as the effects and mechanisms of essential metals on these associations.

View Article and Find Full Text PDF

Fine mapping of the maize QTL qSRC3, responsible for red silk, uncovered the candidate gene ZmMYB20, which encodes an R2R3-MYB transcription factor, has light-sensitive expression, and putatively regulates genes expression associated with anthocyanin biosynthesis. Colorless silk is a key characteristic contributing to the visual quality of fresh corn intended for market distribution. Nonetheless, the identification of Mendelian trait loci and associated genes that control silk color has been scarce.

View Article and Find Full Text PDF

With the rapid development of small-molecule electron acceptors, polymer electron donors are becoming more important than ever in organic photovoltaics, and there is still room for the currently available high-performance polymer donors. To further develop polymer donors with finely tunable structures to achieve better photovoltaic performances, random ternary copolymerization is a useful technique. Herein, by incorporating a new electron-withdrawing segment 2,3-bis(3-octyloxyphenyl)dithieno[3,2-:2',3'-]quinoxaline derivative (C12T-TQ) to PM6, a series of terpolymers were synthesized.

View Article and Find Full Text PDF

Whether adopting healthy lifestyles and maintaining moderate levels of essential metals could attenuate the reduction of heart rate variability (HRV) related to polycyclic aromatic hydrocarbons (PAHs) exposure are largely unknown. In this study, we measured urinary metals and PAHs as well as HRV, and constructed a healthy lifestyle score in 1267 coke oven workers. Linear regression models were used to explore the association of healthy lifestyle score and essential metals with HRV, and interaction analysis was performed to investigate the potential interaction between healthy lifestyle score, essential metals, and PAHs on HRV.

View Article and Find Full Text PDF

Unlabelled: The tassel competes with the ear for nutrients and shields the upper leaves, thereby reducing the yield of grain. The tassel branch number (TBN) is a pivotal determinant of tassel size, wherein the reduced TBN has the potential to enhance the transmission of light and reduce the consumption of nutrients, which should ultimately result in increased yield. Consequently, the TBN has emerged as a vital target trait in contemporary breeding programs that focus on compact maize varieties.

View Article and Find Full Text PDF

Exploring the preparation of multifunctional hydrogels from a bionic perspective is an appealing strategy. Here, a multifunctional hydrogel dressing inspired by the characteristics of porous extracellular matrix produced during Acomys wound healing is prepared. These dressings are printed by digital light processing printing of hydrogels composed of gelatin methacrylate, hyaluronic acid methacrylate, and pretreated platelet-rich plasma (PRP) to shape out triply periodic minimal surface structures, which are freeze-dried for long-term storage.

View Article and Find Full Text PDF

Although disrupted redox homeostasis has emerged as a promising approach for tumor therapy, most existing photosensitizers are not able to simultaneously improve the reactive oxygen species level and reduce the glutathione (GSH) level. Therefore, designing photosensitizers that can achieve these two aspects of this goal is still urgent and challenging. In this work, an organic activatable near-infrared (NIR) photosensitizer, CyI-S-diCF, is developed for GSH depletion-assisted enhanced photodynamic therapy.

View Article and Find Full Text PDF

Yajieshaba YJSB), a traditional Dai medicine formula containing botanical drugs, is commonly employed in Yunnan due to its significant therapeutic effects on liver protection. Consequently, to determine the efficacy of YJSB and the mechanism of action of Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway against liver fibrosis. We wanted to see if YJSB could treat CCl-induced liver fibrosis by regulating the Keap1-Nrf2 signaling pathway.

View Article and Find Full Text PDF

Ubiquitous polycyclic aromatic hydrocarbons (PAHs) and metals could induce hyperuricemia and oxidative damage individually, while their co-exposure effects on hyperuricemia risk and the potential roles of oxidative damage in these health outcomes remain poorly understood. We conducted a cross-sectional study in 1379 coke oven workers. We evaluated the levels of PAH-metal exposure and oxidative damage by urinary monohydroxy-PAHs, plasma benzo [a]pyrene-7,8-diol-9,10-epoxide-albumin (BPDE-Alb) adducts, urinary metals, urinary 8-iso-prostaglandin-F2α, and urinary 8-hydroxydeoxyguanosine (8-OH-dG).

View Article and Find Full Text PDF

Recently, benefiting from the merits of small-molecule acceptors (NFAs), polymer solar cells (PSCs) have achieved tremendous advances. From the perspective of the structural characteristics of the π-conjugated acceptor-donor-acceptor (A-D-A) type of organic molecules, the backbone's planarity and the terminal groups and their substituents have strong influences on the performances of the constructed NFAs. Through enlarging the dihedral angle of the conjugated main chain of NFAs, a certain degree of enhancement of photovoltaic parameters has been achieved.

View Article and Find Full Text PDF

Established high-throughput proteomics methods provide limited information on the stereostructures of proteins. Traditional technologies for protein structure determination typically require laborious steps and cannot be performed in a high-throughput fashion. Here, we report a new medium throughput method by combining mobility capillary electrophoresis (MCE) and native mass spectrometry (MS) for the 3-dimensional (3D) shape determination of globular proteins in the liquid phase, which provides both the geometric structure and molecular mass information of proteins.

View Article and Find Full Text PDF

Measuring the conformations of protein and protein-ligand complexes in solution is critical for investigating protein bioactivities, but their rapid analyses remain as challenging problems. Here, we report the coupling of Taylor dispersion analysis (TDA) with mass spectrometry (MS) for the rapid conformation differentiation of protein and noncovalent protein complex in solution environments. First, a branched capillary design was applied to achieve double band detection for the peak retention time correction in TDA measurements.

View Article and Find Full Text PDF

Recently, main-chain twisted small molecules are attractive as electron-acceptors in polymer solar cells (PSCs) for their upshifted molecular energy levels, enhanced extinction coefficients, and better charge extraction properties along with longer carrier lifetimes and lower recombination rates relative to their planar analogues, which are conducive to the power conversion efficiency (PCE) promotion of PSCs. To further probe the "structure-performance" correlation of main-chain twisted acceptors, in particular the monofluorine-substituted sites on the performances of the resultant acceptors, two new main-chain twisted small molecules were synthesized, in which a fluorine atom was introduced at different sites on the end-capping group 2-(3-oxo-2,3-dihydro--inden-1-ylidene)malononitrile (INCN). Although fine structural modification was adopted, quite different performances were obtained for the two acceptors.

View Article and Find Full Text PDF

Measuring the conformations and effective charges of proteins in solution is critical for investigating protein bioactivity, but their rapid analysis remains a challenging problem. Here we report a mobility capillary electrophoresis (MCE) based method for the rapid analysis of protein stereo-structures and effective charges in different solution environments. With the capability of mixture separation, MCE measures the hydrodynamic radius of a protein through Taylor dispersion analysis and its effective charge through ion mobility analysis.

View Article and Find Full Text PDF

The 3D structures of biomolecules determine their biological function. Established methods in biomolecule structure determination typically require purification, crystallization, or modification of target molecules, which limits their applications for analyzing trace amounts of biomolecules in complex matrices. Here, we developed instruments and methods of mobility capillary electrophoresis (MCE) and its coupling with MS for the 3D structural analysis of biomolecules in the liquid phase.

View Article and Find Full Text PDF

Due to the flexible and compact structures, spherical joints are widely used in parallel manipulators and industrial robots. Real-time detection of the clearance between the ball and the socket in spherical joints is beneficial to compensate motion errors of mechanical systems and improve their transmission accuracy. This work proposes an improved capacitive sensor for detecting the micro-clearance of spherical joints.

View Article and Find Full Text PDF

A new main-chain twisted small molecular acceptor with nonhalogenated end groups (i-IEICO) is designed and synthesized. In contrast to its planar analogue IECIO, i-IEICO possesses an obviously twisted backbone, leading to significant hypsochromic shift in film absorption, slight enhancement in solution extinction coefficient, and significantly elevated molecular energy level. Benefited from these features, i-IEICO is matched well with two wide band gap polymer donor materials (J52 and PBDB-T) both in absorption spectra and molecular energy levels.

View Article and Find Full Text PDF

Protein stereostructure analysis in mixtures still remains challenging, especially large-scale analysis such as in proteomics. With the capability of measuring the hydrodynamic radius of ions in the liquid phase, mobility capillary electrophoresis (MCE) has been applied to study the structure of peptides. In this study, MCE was extended for protein mixture separation and their corresponding hydrodynamic radius analyses.

View Article and Find Full Text PDF

Meconopsis horridula Hook.f. Thoms has been used as a traditional Tibetan medicine to clear away heat, relieve pain, and mobilize static blood.

View Article and Find Full Text PDF