J Colloid Interface Sci
December 2022
Hypothesis: The emerging aqueous-based Cerberus emulsion droplets with multi-domains behave as an excellent platform to design cyto-mimetic compartmentalization for fabrication of anisotropic biomimetic materials and microreactors. However, the ultralow water/water interfacial tension impedes fabrication of aqueous Cerberus droplets in batch-scale and precisely topology regulation especially under lack of deep understanding of w/w interface properties.
Experiments: Aqueous-based ternary phase diagram composed by salt, hydrophilic polymer and fluorocarbon compound is determined.
Hypothesis: Reverse Janus emulsion, with droplets composed by "two rooms" of water phases, is a novel multiple emulsion attributed to excellent integration capability and biocompatibility. However, significant instability compared with normal Janus emulsions renders the stability issue of great importance. Moreover, the ultra-low aqueous-aqueous inner interfacial tension, the anisotropic nature of the droplets with distinct lobe composition, and the random orientation in the continuous phase endow the complicated and various demulsification mechanisms.
View Article and Find Full Text PDFA strategy is proposed to produce novel (W1 + W2)/O reverse Janus emulsions in batch scale simply by one-step vortex mixing. Aqueous two-phase systems (ATPSs), i.e.
View Article and Find Full Text PDF