Hydrogen evolution reaction (HER) in neutral or alkaline electrolytes is appealing for sustainable hydrogen production driven by water splitting, but generally suffers from unsatisfied catalytic activities at high current densities owing to extra kinetic energy barriers required to generate protons through water dissociation. In response, here, a competitive NiN/CoN/CoP electrocatalyst with multifunctional interfacial sites and multilevel interfaces, in which NiN/CoP performs as active sites to boost initial water dissociation and CoN/CoP accelerates subsequent hydrogen adsorption process as confirmed by density functional theory calculations and in situ X-ray photoelectron spectroscopy analysis, is reported. This hybrid catalyst possesses extraordinary HER activity in base, featured by extremely low overpotentials of 115 and 142 mV to afford 500 and 1000 mA cm, respectively, outperforming most ever-reported metal phosphides-based catalysts.
View Article and Find Full Text PDFA series of carbon and phthalocyanine catalysts were prepared with uniform and stretchable sunflower straw biological materials as the carbon source and inexpensive copper phthalocyanine (CuPc) pigment as a nitrogen doping source by a facile high-temperature carbonization method. This kind of biomass carbon material sunflower straw with abundant pore structure and sponge-like expansion and contraction functions can not only be used as a source of porous carbon in biomass carbon materials, but also as a carbon carrier with high specific surface area to provide nanoparticle adhesion sites. When it was immersed in the copper phthalocyanine pigment solution, more active sites could be exposed, so that CuPc particles could be uniformly doped and distributed on the porous carbon material.
View Article and Find Full Text PDF