Publications by authors named "Haim J Wolfson"

Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric state from the structure of the crystal lattice represent outstanding challenges. A community-wide effort was launched to tackle these challenges. The latest resources on protein complexes and interfaces were exploited to derive a benchmark dataset consisting of 1677 homodimer protein crystal structures, including a balanced mix of physiological and non-physiological complexes.

View Article and Find Full Text PDF

Multiple sequence alignments (MSAs) are the workhorse of molecular evolution and structural biology research. From MSAs, the amino acids that are tolerated at each site during protein evolution can be inferred. However, little is known regarding the repertoire of tolerated amino acids in proteins when only a few or no sequence homologs are available, such as orphan and de novo designed proteins.

View Article and Find Full Text PDF

Design of peptide binders is an attractive strategy for targeting "undruggable" protein-protein interfaces. Current design protocols rely on the extraction of an initial sequence from one known protein interactor of the target protein, followed by in-silico or in-vitro mutagenesis-based optimization of its binding affinity. Wet lab protocols can explore only a minor portion of the vast sequence space and cannot efficiently screen for other desirable properties such as high specificity and low toxicity, while in-silico design requires intensive computational resources and often relies on simplified binding models.

View Article and Find Full Text PDF

The SARS-CoV-2 Omicron variant evades most neutralizing vaccine-induced antibodies and is associated with lower antibody titers upon breakthrough infections than previous variants. However, the mechanism remains unclear. Here, we find using a geometric deep-learning model that Omicron's extensively mutated receptor binding site (RBS) features reduced antigenicity compared with previous variants.

View Article and Find Full Text PDF

Predicting the various binding sites of a protein from its structure sheds light on its function and paves the way towards design of interaction inhibitors. Here, we report ScanNet, a freely available web server for prediction of protein-protein, protein - disordered protein and protein - antibody binding sites from structure. ScanNet (Spatio-Chemical Arrangement of Neighbors Network) is an end-to-end, interpretable geometric deep learning model that learns spatio-chemical patterns directly from 3D structures.

View Article and Find Full Text PDF
Article Synopsis
  • ScanNet is an innovative geometric deep learning model designed to predict functional sites on proteins, like binding sites for small molecules and antibodies, using 3D structural data.
  • Unlike traditional methods that rely on handcrafted features and similar protein comparisons, ScanNet autonomously learns relevant features based on the spatial arrangement of atoms and amino acids.
  • The model has been shown to accurately identify binding sites, including for unseen protein structures, and has been applied to predict epitopes of the SARS-CoV-2 spike protein, contributing to a better understanding of its antigenic regions.
View Article and Find Full Text PDF

Designing peptides for protein-protein interaction inhibition is of significant interest in computer-aided drug design. Such inhibitory peptides could mimic and compete with the binding of the partner protein to the inhibition target. Experimental peptide design is a laborious, time consuming, and expensive multi-step process.

View Article and Find Full Text PDF

SARS-CoV-2 Omicron variant of concern (VOC) contains fifteen mutations on the receptor binding domain (RBD), evading most neutralizing antibodies from vaccinated sera. Emerging evidence suggests that Omicron breakthrough cases are associated with substantially lower antibody titers than other VOC cases. However, the mechanism remains unclear.

View Article and Find Full Text PDF

Memdock is a tool for docking α-helical membrane proteins which takes into consideration the lipid bilayer environment. Given two α-helical membrane located protein molecules, the method outputs a list of potential complexes sorted by energy criteria. The program includes three steps: docking, refinement, and re-ranking of the results.

View Article and Find Full Text PDF

Macromolecular complexes play a key role in cellular function. Predicting the structure and dynamics of these complexes is one of the key challenges in structural biology. Docking applications have traditionally been used to predict pairwise interactions between proteins.

View Article and Find Full Text PDF

Motivation: A highly efficient template-based protein-protein docking algorithm, nicknamed SnapDock, is presented. It employs a Geometric Hashing-based structural alignment scheme to align the target proteins to the interfaces of non-redundant protein-protein interface libraries. Docking of a pair of proteins utilizing the 22 600 interface PIFACE library is performed in < 2 min on the average.

View Article and Find Full Text PDF

In this chapter we present two methods related to rational design of inhibitory peptides: PepCrawler: A tool to derive binding peptides from protein-protein complexes and the prediction of protein-peptide complexes. Given an initial protein-peptide complex, the method detects improved predicted peptide binding conformations which bind the protein with higher affinity. This program is a robotics motivated algorithm, representing the peptide as a robotic arm moving among obstacles and exploring its conformational space in an efficient way.

View Article and Find Full Text PDF

Motivation: A wide range of fundamental biological processes are mediated by membrane proteins. Despite their large number and importance, less than 1% of all 3D protein structures deposited in the Protein Data Bank are of membrane proteins. This is mainly due to the challenges of crystallizing such proteins or performing NMR spectroscopy analyses.

View Article and Find Full Text PDF

Motivation: Design of protein-protein interaction (PPI) inhibitors is a major challenge in Structural Bioinformatics. Peptides, especially short ones (5-15 amino acid long), are natural candidates for inhibition of protein-protein complexes due to several attractive features such as high structural compatibility with the protein binding site (mimicking the surface of one of the proteins), small size and the ability to form strong hotspot binding connections with the protein surface. Efficient rational peptide design is still a major challenge in computer aided drug design, due to the huge space of possible sequences, which is exponential in the length of the peptide, and the high flexibility of peptide conformations.

View Article and Find Full Text PDF

Motivation: Atomic resolution modeling of large multimolecular assemblies is a key task in Structural Cell Biology. Experimental techniques can provide atomic resolution structures of single proteins and small complexes, or low resolution data of large multimolecular complexes.

Results: We present a novel integrative computational modeling method, which integrates both low and high resolution experimental data.

View Article and Find Full Text PDF

LIM kinases (LIMKs) are important cell cytoskeleton regulators that play a prominent role in cancer manifestation and neuronal diseases. The LIMK family consists of two homologues, LIMK1 and LIMK2, which differ from one another in expression profile, intercellular localization, and function. The main substrate of LIMK is cofilin, a member of the actin-depolymerizing factor (ADF) protein family.

View Article and Find Full Text PDF
Article Synopsis
  • The study assesses the accuracy of predictions regarding the positions of water molecules at protein-protein interfaces, as part of the CAPRI experiment.
  • Out of 20 groups that provided 195 models, only 44% of high- or medium-quality docking models had a significant recall fraction for water-mediated contacts, highlighting challenges in accurately predicting these positions.
  • However, some predictions were notably successful, particularly regarding important hotspot water positions, suggesting that high-quality protein modeling and advanced computational techniques can enhance the accuracy of such predictions.
View Article and Find Full Text PDF

Translin is a highly conserved RNA- and DNA-binding protein that plays essential roles in eukaryotic cells. Human translin functions as an octamer, but in the octameric crystallographic structure, the residues responsible for nucleic acid binding are not accessible. Moreover, electron microscopy data reveal very different octameric configurations.

View Article and Find Full Text PDF

The β-lactoglobulin (β-LG) protein was discovered to be an efficient and selective dispersant for carbon nanotubes (CTNs) with certain diameters. A dispersion process of CTNs by the β-LG was studied, focusing on the relationships between the surface curvature of the CNT and the β-LG's efficiency in dispersing them, using cryogenic-transmission electron microscopy (cryo-TEM) and optical spectroscopy. Plausible binding sites of the β-LG, responsible for the interaction of the protein with CNTs of various diameters (surface curvatures) were also investigated and were found to be in good agreement with corresponding docking calculations.

View Article and Find Full Text PDF

The ubiquitylation signal promotes trafficking of endogenous and retroviral transmembrane proteins. The signal is decoded by a large set of ubiquitin (Ub) receptors that tether Ub-binding domains (UBDs) to the trafficking machinery. We developed a structure-based procedure to scan the protein data bank for hidden UBDs.

View Article and Find Full Text PDF

Neurofibromin regulates cell motility via three distinct GTPase pathways acting through two different domains, the Ras GTPase-activating protein-related domain (GRD) and the pre-GRD domain. First, the GRD domain inhibits Ras-dependent changes in cell motility through the mitogen activated protein cascade. Second, it also regulates Rho-dependent (Ras-independent) changes by activating LIM kinase 2 (LIMK2), an enzyme that phosphorylates and inactivates cofilin (an actin-depolymerizing factor).

View Article and Find Full Text PDF

Motivation: Design of protein-protein interaction (PPI) inhibitors is a key challenge in structural bioinformatics and computer-aided drug design. Peptides, which partially mimic the interface area of one of the interacting proteins, are natural candidates to form protein-peptide complexes competing with the original PPI. The prediction of such complexes is especially challenging due to the high flexibility of peptide conformations.

View Article and Find Full Text PDF

Accurate prediction of protein-DNA complexes could provide an important stepping stone towards a thorough comprehension of vital intracellular processes. Few attempts were made to tackle this issue, focusing on binding patch prediction, protein function classification and distance constraints-based docking. We introduce ParaDock: a novel ab initio protein-DNA docking algorithm.

View Article and Find Full Text PDF

Advances in electron microscopy (EM) allow for structure determination of large biological assemblies at increasingly higher resolutions. A key step in this process is fitting multiple component structures into an EM-derived density map of their assembly. Here, we describe a web server for this task.

View Article and Find Full Text PDF

Symmetric protein complexes are abundant in the living cell. Predicting their atomic structure can shed light on the mechanism of many important biological processes. Symmetric docking methods aim to predict the structure of these complexes given the unbound structure of a single monomer, or its model.

View Article and Find Full Text PDF