Publications by authors named "Haim Haviv"

Phospholemman (FXYD1) is a single-transmembrane protein regulator of Na,K-ATPase, expressed strongly in heart, skeletal muscle, and brain and phosphorylated by protein kinases A and C at Ser-68 and Ser-63, respectively. Binding of FXYD1 reduces Na,K-ATPase activity, and phosphorylation at Ser-68 or Ser-63 relieves the inhibition. Despite the accumulated information on physiological effects, whole cell studies provide only limited information on molecular mechanisms.

View Article and Find Full Text PDF

The activity of membrane proteins such as Na,K-ATPase depends strongly on the surrounding lipid environment. Interactions can be annular, depending on the physical properties of the membrane, or specific with lipids bound in pockets between transmembrane domains. This paper describes three specific lipid-protein interactions using purified recombinant Na,K-ATPase.

View Article and Find Full Text PDF

In the ciliary epithelium of the eye, the pigmented cells express the α1β1 isoform of Na,K-ATPase, whereas the non-pigmented cells express mainly the α2β3 isoform of Na,K-ATPase. In principle, a Na,K-ATPase inhibitor with selectivity for α2 could effectively reduce intraocular pressure with only minimal local and systemic toxicity. Such an inhibitor could be applied topically provided it was sufficiently permeable via the cornea.

View Article and Find Full Text PDF

Membrane proteins interact with phospholipids either via an annular layer surrounding the transmembrane segments or by specific lipid-protein interactions. Although specifically bound phospholipids are observed in many crystal structures of membrane proteins, their roles are not well understood. Na,K-ATPase is highly dependent on acid phospholipids, especially phosphatidylserine, and previous work on purified detergent-soluble recombinant Na,K-ATPase showed that phosphatidylserine stabilizes and specifically interacts with the protein.

View Article and Find Full Text PDF

The α2 isoform of Na,K-ATPase plays a crucial role in Ca(2+) handling, muscle contraction, and inotropic effects of cardiac glycosides. Thus, structural, functional, and pharmacological comparisons of α1, α2, and α3 are of great interest. In Pichia pastoris membranes expressing human α1β1, α2β1, and α3β1 isoforms, or using the purified isoform proteins, α2 is most easily inactivated by heating and detergent (α2 ≫ α3 > α1).

View Article and Find Full Text PDF

This work investigates the role of charge of the phosphorylated aspartate, Asp(369), of Na(+),K(+)-ATPase on E(1) <--> E(2) conformational changes. Wild type (porcine alpha(1)/His(10)-beta(1)), D369N/D369A/D369E, and T212A mutants were expressed in Pichia pastoris, labeled with fluorescein 5'-isothiocyanate (FITC), and purified. Conformational changes of wild type and mutant proteins were analyzed using fluorescein fluorescence (Karlish, S.

View Article and Find Full Text PDF

Human alpha1 and alpha2 isoforms of Na,K-ATPase have been expressed with porcine 10*Histidine-tagged beta1 subunit in Pichia pastoris. Methanol-induced expression of alpha2 is optimal at 20 degrees C, whereas at 25 degrees C, which is optimal for expression of alpha1, alpha2 is not expressed. Detergent-soluble alpha2beta1 and alpha1beta1 complexes have been purified in a stable and functional state.

View Article and Find Full Text PDF

Na+,K+-ATPase (porcine alpha1/His10*beta1 or human alpha1/porcine His10*beta1) has been expressed in Pichia pastoris and purified by Co2+-chelate affinity resin chromatography, yielding about 80% pure, functional, and stable protein in a single step. The protein was eluted in nonionic detergents together with a phosphatidylserine. Size exclusion chromatography showed that the protein eluted in n-dodecyl beta-d-maltoside is an alpha1/beta1 protomer, whereas that in octaethylene glycol dodecyl monoether contains a mixture of alpha1/beta1 protomer and higher order oligomers.

View Article and Find Full Text PDF

Recently, alkylene-linked heterodimers of tacrine (1) and 5-amino-5,6,7,8-tetrahydroquinolinone (2, hupyridone) were shown to exhibit higher acetylcholinesterase (AChE) inhibition than either monomeric 1 or 2. Such inhibitors are potential drug candidates for ameliorating the cognitive decrements in early Alzheimer patients. In an attempt to understand the inhibition mechanism of one such dimer, (RS)-(+/-)-N-9-(1,2,3,4-tetrahydroacridinyl)-N'-5-[5,6,7,8-tetrahydro-2'(1'H)-quinolinonyl]-1,10-diaminodecane [(RS)-(+/-)-3] bisoxalate, the racemate was soaked in trigonal Torpedo californica AChE (TcAChE) crystals, and the X-ray structure of the resulting complex was solved to 2.

View Article and Find Full Text PDF

Bacterial intein-like (BIL) domains are newly identified homologs of intein protein-splicing domains. The two known types of BIL domains together with inteins and hedgehog (Hog) auto-processing domains form the Hog/intein (HINT) superfamily. BIL domains are distinct from inteins and Hogs in sequence, phylogenetic distribution, and host protein type, but little is known about their biochemical activity.

View Article and Find Full Text PDF