Insects are ectothermic organisms; hence, all aspects of their biology are strongly influenced by ambient temperatures. Different insect species respond differently with phenotypic plasticity and/or genetic adaptation to changing temperatures. Here, we tested the thermal adaptation of the house fly and three of its parasitoids species by comparing life-history parameters in populations from a hot climate region (Jordan Valley) and from a moderate-climate region (Galilee).
View Article and Find Full Text PDFColonies of house flies (Musca domestica L. [Diptera: Muscidae]) and four species of parasitoids (Muscidifurax raptor Girault and Sanders, Muscidifurax zaraptor Kogan and Legner, Spalangia cameroni Perkins and Spalangia endius Walker) were established by making collections from dairy farms near Bell, FL, Beatrice, NE, Minneapolis, MN, and San Jacinto, CA. Colonies were assessed for heat tolerance by comparing life history parameters at 25-27°C and fluctuating hot (26.
View Article and Find Full Text PDFBackground: The housefly, Musca domestica L., is an important pest of animal agriculture. Effective fly management requires integration of manure management, mass trapping, biological control, and selective insecticide use.
View Article and Find Full Text PDF