Int J Biochem Cell Biol
May 2008
Heparanase is an endoglycosidase which cleaves heparan sulfate and hence participates in degradation and remodeling of the extracellular matrix. Importantly, heparanase activity correlated with the metastatic potential of tumor-derived cells, attributed to enhanced cell dissemination as a consequence of heparan sulfate cleavage and remodeling of the extracellular matrix barrier. Heparanase has been characterized as a glycoprotein, yet glycan biochemical analysis was not performed to date.
View Article and Find Full Text PDFJ Biochem Biophys Methods
April 2007
Glycosylation is the most versatile and one of the most abundant protein modifications. It has a structural role as well as diverse functional roles in many specific biological functions, including cancer development, viral and bacterial infections, and autoimmunity. The diverse roles of glycosylation in biological processes are rapidly growing areas of research, however, Glycobiology research is limited by the lack of a technology for rapid analysis of glycan composition of glycoproteins.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2006
The yeast chromatin protein Sin1p/Spt2p has long been studied, but the understanding of its function has remained elusive. The protein has sequence similarity to HMG1, specifically binds crossing DNA structures, and serves as a negative transcriptional regulator of a small family of genes that are activated by the SWI/SNF chromatin-remodeling complex. Recently, it has been implicated in maintaining the integrity of chromatin during transcription elongation.
View Article and Find Full Text PDF