Micromachines (Basel)
October 2024
A wavelength-switchable ytterbium-doped mode-locked fiber laser is reported in this article. Two Mach-Zehnder interferometers (MZIs, denoted as MZI1, MZI2) with close free spectral ranges (FSRs) are connected in series to form a Vernier effect sensor. By utilizing the filtering effect of the Vernier effect sensor, the wavelength-switchable output of an ytterbium-doped mode-locked fiber laser is realized.
View Article and Find Full Text PDFUnderstanding the properties of explosives is the basis for investigating and analyzing explosion cases. To date, due to the strict legal control of standard explosives and initiators, homemade pyrotechnics composed of oxidizers and fuels have become popular explosive sources of improvised explosive devices (IEDs) threatening greatly social stability and personal safety. The reactivity of pyrotechnics strongly depends on their intrinsic characteristics and operating conditions, which determine the efficiencies of heat and mass transfer between the reaction zone and the unreacted zone.
View Article and Find Full Text PDFA porous metal-organic framework (MOF)-based frustrated Lewis pairs (FLPs) were prepared via a ligand replacement strategy to generate organic linker defects in zirconium-based MOF (MOF-808), thereby exposing Zr sites as Lewis acid. Due to the rigid features of the MOF skeleton, the unsaturated metal cluster and the adjacent lattice oxygen (Lewis bases) are in sterically hindered positions, which formed FLP sites with efficient H activation ability. This porous heterogeneous FLP catalyst [MOF-808-OH (15%)] exhibits high performance styrene hydrogenation to ethylbenzene with 99% yield.
View Article and Find Full Text PDFA highly effective enantioselective monobenzoylation of 1,3-diols has been developed for the synthesis of 1,1-disubstituted tetrahydro-β-carbolines. The chemistry has been successfully applied to the asymmetric total synthesis of (+)-alstrostine G, which also features a cascade Heck/hemiamination reaction enabling facile construction of the pivotal pentacyclic core.
View Article and Find Full Text PDFMaintaining wound moisture and monitoring of infection are crucial aspects of chronic wound treatment. The development of a pH-sensitive functional hydrogel dressing is an effective approach to monitor, protect, and facilitate wound healing. In this study, beet red pigment extract (BRPE) served as a native and efficient pH indicator by being grafted into silane-modified bacterial nanocellulose (BNC) to prepare a pH-sensitive wound hydrogel dressing (S-g-BNC/BRPE).
View Article and Find Full Text PDFThe design of smart stimuli-responsive photoluminescent materials capable of multi-level encryption and complex information storage is highly sought after in the current information era. Here, a novel adamantyl-capped CsPbBr (AD-CsPbBr) perovskite NCs, along with its supramolecular host-guest assembly partner a modified β-CD (mCD), mCD@AD-CsPbBr, are designed and prepared. By dispersing these two materials in different solvents, namely, AD-CsPbBr in toluene, mCD@AD-CsPbBr in toluene, and mCD@AD-CsPbBr in methanol, the three solutions exhibit diverse photoluminescence (PL) turn-on/off or PL discoloration response upon supramolecular stimulus.
View Article and Find Full Text PDFTextile-based wearable electronics have attracted intensive research interest due to their excellent flexibility and breathability inherent in the unique three-dimensional porous structures. However, one of the challenges lies in achieving highly conductive patterns with high precision and robustness without sacrificing the wearing comfort. Herein, we developed a universal and robust in-textile photolithography strategy for precise and uniform metal patterning on porous textile architectures.
View Article and Find Full Text PDFAs individuals age, cancer becomes increasingly common. This continually rising risk can be attributed to various interconnected factors that influence the body's susceptibility to cancer. Among these factors, the accumulation of senescent cells in tissues and the subsequent decline in immune cell function and proliferative potential are collectively referred to as immunosenescence.
View Article and Find Full Text PDFCrop perennialization has garnered global attention recently due to its role in sustainable agriculture. However, there is still a lack of detailed information regarding perennial rice's regenerative characteristics and physiological mechanisms in crop ratooning systems with different rice stubble heights. In addition, the response of phytohormones to varying stubble heights and how this response influences the regenerative characteristics of ratoon rice remains poorly documented.
View Article and Find Full Text PDFMicromachines (Basel)
October 2023
Tunable fiber lasers have the advantages of good beam quality, high integration, and adjustable output wavelength, and they are widely used in fields such as optical fiber communication and optical fiber sensing. The fiber filter is one of the key components of tunable fiber lasers. Among the various filters currently used, multimode interference filters have the advantages of simple structure, convenient implementation, flexible tuning methods, and convenient spectral range design.
View Article and Find Full Text PDFMicrowave absorption materials (MAMs) are originally developed for military purposes, but have since evolved into versatile materials with promising applications in modern technologies, including household use. Despite significant progress in bench-side research over the past decade, MAMs remain limited in their scope and have yet to be widely adopted. This review explores the history of MAMs from first-generation coatings to second-generation functional absorbers, identifies bottlenecks hindering their maturation.
View Article and Find Full Text PDFMaterials (Basel)
August 2023
In this study, the influence of fiber particle size on the mechanical properties of a wood--plastic composite (WPC) was investigated using a combination of experimental measurements and numerical modeling. Four different sizes of wood fibers (10-20 mesh, 20-40 mesh, 40-80 mesh, and 80-120 mesh) were used to reinforce high-density polyethylene (HDPE), either separately or in combination. The different sizes of fibers produced varying properties in the resulting composites.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2023
High-performance microwave absorption coatings are critically required in the stealth defense system of military platforms. Regrettably, just optimizing the property but neglecting the application feasibility seriously inhibits its practical application in the field of microwave absorption. To face this challenge, the TiO/carbon nanotubes (CNTs)/AlO coatings were successfully fabricated by a plasma-sprayed method.
View Article and Find Full Text PDFCurrent collectors are indispensable parts that provide electron transport and mechanical support of electrode materials in a battery. Nowadays, thin metal foils made of Cu and Al are used as current collectors of lithium batteries, but they do not contribute to the storage capacity. Therefore, decreasing the weight of current collectors can directly enhance the energy density of a battery.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2023
CdSe/ZnS Quantum dots (QDs) are possibly released to surface water due to their extensive application. Based on their high reactivity, even small amounts of toxicant QDs will disturb water microbes and pose a risk to aquatic ecology. Here, we evaluated CdSe/ZnS QDs toxicity to Tetrahymena thermophila (T.
View Article and Find Full Text PDFAn optical transparent and hazy film with admirable flexibility, electromagnetic interference (EMI) shielding, and Joule heating performance meeting the requirements of optoelectronic devices is significantly desirable. Herein, a cellulose paper was infiltrated by epoxy resin to fabricate a transparent cellulose paper (TCP) with high transparency, optical haze, and favorable flexibility, owing to effective light scattering and mechanical enhancement of the cellulose network. Moreover, a highly connected silver nanowire (AgNW) network was constructed on the TCP substrate by the spray-coating method and appropriate thermal annealing technique to realize high electrical conductivity and favorable optical transmittance of the composite film at the same time, followed by coating of a polydimethylsiloxane (PDMS) layer for protection of the AgNW network.
View Article and Find Full Text PDFA series of novel 2-aminopyridine derivatives 1-26 have been designed and synthesized by structural modifications on a lead USP7 inhibitor, GNE6640. All the compounds were evaluated for their USP7 inhibitory activities. The results showed that most of the compounds have good USP7 inhibitory activities at the concentration of 50 μM.
View Article and Find Full Text PDFThe protective effect of phloridzin (PHL) and its potential mechanism were examined in mice with liver injury induced by isoniazid (INH) and rifampicin (RFP). The mice were randomly divided into normal control group, model group, low (80 mg/kg), medium (160 mg/kg) and high (320 mg/kg) phloridzin-treated groups. After 28 d treatment, blood and liver tissue were collected and analysed.
View Article and Find Full Text PDFBamboo fibers are considered as a more attractive option for the reinforcement of wood plastic composites as compared to wood fiber due to its fast growth rate and good toughness. Heat treatment is an environment-friendly method of improving the integrated performance of bamboo materials. This paper highlights the heat treatment of bamboo fiber for suitable properties as reinforcements in bamboo plastic composites.
View Article and Find Full Text PDFHeterogeneous interface design to boost interfacial polarization has become a feasible way to realize high electromagnetic wave absorbing (EMA) performance of dielectric materials. However, interfacial polarization in simple structures such as particles, rods, and flakes is weak and usually plays a secondary role. In order to enhance the interfacial polarization and simultaneously reduce the electronic conductivity to avoid reflection of electromagnetic wave, a more rational geometric structure for dielectric materials is desired.
View Article and Find Full Text PDFConstructing multifunctional electromagnetic interference (EMI) shielding films with superior mechanical strength has sparked a lot of interest in the fields of wearable electronics. In this work, the conductive silver nanowires (AgNWs) were synthesized and impregnated into the highly aligned cellulose scaffold (CS) fabricated by wood delignification followed by hot-pressing and polydimethylsiloxane (PDMS) dipping processes to obtain the outstanding EMI shielding cellulosic film (d-AgNWs@CS-PDMS). The consecutively conductive pathway of AgNWs was constructed in the microchannels of the CS as a result of the hydrogen bonding between AgNWs and cellulose fibers, which is conducive to the reflection of incident EM waves.
View Article and Find Full Text PDFBackground: The asynchronous filling between superior spikelets (SS) and inferior spikelets (IS) in rice has become a research hotspot. The stagnant development and poor grain filling of IS limit yields and the formation of good quality rice. A large number of studies on this phenomenon have been carried out from the genome, transcriptome and proteome level, indicating that asynchronous filling of SS and IS filling is a complex, but orderly physiological and biochemical process involving changes of a large number of genes, protein expression and modification.
View Article and Find Full Text PDFHierarchically cellular, stiff, and lightweight niobium carbide (NbC)-pyrolytic carbon (PyC) monolithic foam composites possessing excellent electromagnetic interference shielding effectiveness (EMI SE) were developed via a natural wood template-based method. Pyrolytic carbon derived from the decomposed cellulose in the wood worked as the carbon source for the growth of NbC phase, and the NbC-PyC heterogeneous nano-interface formed between the residual PyC and the freshly formed NbC. Multi-loss mechanisms (e.
View Article and Find Full Text PDFA recyclable and magnetic nanocomposite catalyst (IL/FeO@HKUST-1) was synthesized via grafting ionic liquid (IL) [AEMIm]BF into magnetically functionalized metal-organic framework FeO@HKUST-1 in a water-ethanol media. The properties of IL/FeO@HKUST-1 were fully characterized by powder X-ray diffraction, electron microscopy, Fourier-transform infrared spectroscopy, nitrogen adsorption-desorption, density-functional theory, and a magnetic property measurement system. IL/FeO@HKUST-1 showed high activity in the solvent-free cycloaddition of CO with epoxides under mild conditions.
View Article and Find Full Text PDF