Understanding interactions between bone morphogenetic proteins (BMPs) and biomaterials is of great significance in preserving the structure and bioactivity of BMPs when utilized in clinical applications. Currently, bone morphogenetic protein-2 (BMP-2) is one of the most important growth factors in bone tissue engineering; however, atomistic interactions between BMP-2 and zinc-substituted hydroxyapatite (Zn-HAP, commonly used in artificial bone implants) have not been well clarified until now. Thus, in this work, the interaction energies, binding/debinding states, and molecular structures of BMP-2 upon a series of Zn-HAP surfaces (Zn-HAPs, 1 at%, 2.
View Article and Find Full Text PDFIn this article we proposed a simple hexagonal model for exploring the hybridization of thiol-modified probe DNA self-assembled monolayers (SAMs) on gold with target DNA molecules in solution. The size-fitting coefficient d(c)/d(t) from the model was used to discuss the principle for DNA optimal hybridization, where d(c) was the channel diameter among three adjacent probe DNA molecules on gold and dt was the gyration diameter of the target DNA molecules in solution. Experimentally we investigated the hybridization effect (hybridization efficiency H(E) and hybridization density H(D)) of thiol-modified probe DNA (DNA base amount m = 15, 25 or 35)/mercaptohexanol (MCH) mixed SAMs on gold in 1 M electrolyte solution by chronocoulometry (CC) and electrochemical impedance spectroscopy (EIS).
View Article and Find Full Text PDF