Alveolar macrophages play a crucial role in maintaining lung homeostasis. However, the mechanisms underlying alveolar macrophage pyroptosis and inflammasome activation in radiation-induced lung injury remain unclear. In this study, we employed multicolor flow cytometry and single-cell RNA sequencing to reveal the immune cell and cell death landscape in the tissue microenvironment of radiation-induced lung injury.
View Article and Find Full Text PDFCancer Immunol Immunother
November 2024
Background: Lymphocyte antigen 6 complex, locus E (Ly6E) has been initially demonstrated to involve in T cell activity and impair viral infectivity. Recently, high expression levels of Ly6E have been reported in tumor microenvironment (TME) of various types of cancers. However, the immunoregulatory mechanism of Ly6E manipulating TME remains unknown.
View Article and Find Full Text PDFBackground: B7 homology 4 (B7-H4), a potential target for cancer therapy, has been demonstrated to inhibit T cell cytotoxicity in the early stages of breast cancer. However, B7-H4 manipulating breast tumor immune microenvironment (TIME) in the tumor progression remains unknown.
Methods: We engineered T cells with B7-H4-specific chimeric antigen receptors (CARs) and performed a T cell co-culture assay to characterize B7-H4 expression level in breast cancer cells escaping from T cell cytotoxicity.
Macrophage pyroptosis plays an important role in the development of radiation-induced cell and tissue damage, leading to acute lung injury. However, the underlying mechanisms of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3)-mediated macrophage pyroptosis and the regulatory factors involved in radiation-induced pyroptosis are unclear. In this study, the expression of the NLRP3 inflammasome and pyroptosis-associated factors in murine macrophage cell lines was investigated after ionizing radiation.
View Article and Find Full Text PDFInt Immunopharmacol
May 2023
Background: Due to the negative association between inhibitor of nuclear factor-kB kinase-interacting protein (IKBIP) and survival in gliomas, this study aimed to comprehensively analyze the potential function of IKBIP in glioblastoma multiforme (GBM).
Methods: GBM samples were retrieved from The Cancer Genome Atlas and Chinese Glioma Genome Atlas as training and validation cohorts, respectively, and survival and Cox regression analyses were conducted. Based on clinical indicators and IKBIP, three prognostic models were established and then verified using the validation dataset.
Background: Myeloid cell-mediated immunosuppression is a major obstacle to checkpoint blockade immunotherapy. We previously reported that total biflavonoids extract from Selaginella doederleinii (TBESD) and a flavone monomer isolated from TBESD, named Delicaflavone, have favorable anti-tumor activity. However, whether TBESD and Delicaflavone could affect the tumor microenvironment (TME) remains unclear.
View Article and Find Full Text PDF