Near-infrared (NIR) phototheranostics provide promising noninvasive imaging and treatment for head and neck squamous cell carcinoma (HNSCC), capitalizing on its adjacency to skin or mucosal surfaces. Activated by laser irradiation, targeted NIR fluorophores can selectively eradicate cancer cells, harnessing the power of synergistic photodynamic therapy and photothermal therapy. However, there is a paucity of NIR bioprobes showing tumor-specific targeting and effective phototheranosis without hurting surrounding healthy tissues.
View Article and Find Full Text PDFFluorescence-guided surgery (FGS) aids surgeons with real-time visualization of small cancer foci and borders, which improves surgical and prognostic efficacy of cancer. Despite the steady advances in imaging devices, there is a scarcity of fluorophores available to achieve optimal FGS. Here, 1) a pH-sensitive near-infrared fluorophore that exhibits rapid signal changes in acidic tumor microenvironments (TME) caused by the attenuation of intramolecular quenching, 2) the inherent targeting for cancer based on chemical structure (structure inherent targeting, SIT), and 3) mitochondrial and lysosomal retention are reported.
View Article and Find Full Text PDFAmong modalities of cancer immunotherapy, near-infrared photoimmunotherapy (NIR-PIT) has reached significant preclinical and clinical stages and quickly evolved over the last 5 years. NIR-PIT uses deep-penetrable NIR light to induce physicochemical changes in the antibody-photosensitizer conjugate (APC), leading to resultant necrosis and immunogenic cell death (ICD) of the cancer cells. Alternatively, other types of photomedicine use photosensitizers to convert absorbed light energy either into reactive oxygen species for photodynamic therapy (PDT) or into heat for photothermal therapy (PTT).
View Article and Find Full Text PDFThe residual tumor after surgery is the most significant prognostic factor of patients with epithelial ovarian cancer. Near-infrared (NIR) fluorescence-guided surgery is actively utilized for tumor localization and complete resection during surgery. However, currently available contrast-enhancing agents display low on-target binding, unfavorable pharmacokinetics, and toxicity, thus not ideal for clinical use.
View Article and Find Full Text PDF