Publications by authors named "Hailey Lee"

We report a technique to generate a murine model of lung metastases by selectively injecting tumor cells into the right heart ventricle under ultrasound guidance. First, we describe cell preparation and reference animal preparation as previously described. We then detail the technique using a previously described 3D-printed instrument stabilization device.

View Article and Find Full Text PDF

Here, we present a protocol to generate a murine model of liver metastasis by directly injecting tumor cells into the portal vein under ultrasound guidance. We describe steps for animal and cell preparation and two techniques for injecting tumor cells. One technique is freehand, while the other technique is device-assisted using a 3D-printed prototype device.

View Article and Find Full Text PDF

Stimulator of interferon genes (STING) is a mediator of immune recognition of cytosolic DNA, which plays important roles in cancer, cytotoxic therapies, and infections with certain pathogens. Although pharmacologic STING activation stimulates potent antitumor immune responses in animal models, clinically applicable pharmacodynamic biomarkers that inform of the magnitude, duration, and location of immune activation elicited by systemic STING agonists are yet to be described. We investigated whether systemic STING activation induces metabolic alterations in immune cells that can be visualized by PET imaging.

View Article and Find Full Text PDF

Purine nucleoside phosphorylase (PNP) enables the breakdown and recycling of guanine nucleosides. PNP insufficiency in humans is paradoxically associated with both immunodeficiency and autoimmunity, but the mechanistic basis for these outcomes is incompletely understood. Here, we identify two immune lineage-dependent consequences of PNP inactivation dictated by distinct gene interactions.

View Article and Find Full Text PDF

We determine that type I interferon (IFN) response biomarkers are enriched in a subset of pancreatic ductal adenocarcinoma (PDAC) tumors; however, actionable vulnerabilities associated with IFN signaling have not been systematically defined. Integration of a phosphoproteomic analysis and a chemical genomics synergy screen reveals that IFN activates the replication stress response kinase ataxia telangiectasia and Rad3-related protein (ATR) in PDAC cells and sensitizes them to ATR inhibitors. IFN triggers cell-cycle arrest in S-phase, which is accompanied by nucleotide pool insufficiency and nucleoside efflux.

View Article and Find Full Text PDF