Publications by authors named "Hailei Wei"

Pseudomonas syringae deploys a type III secretion system (T3SS) to deliver effector proteins to facilitate infection of plant cells; however, little is known about the direct interactions between T3SS components and plants. Here, we show that the specialized lytic transglycosylase (SLT) domain of P. syringae pv.

View Article and Find Full Text PDF

A polyphasic taxonomic approach was used to characterize the three bacterial strains (FP830, FP2034, and FP2262) isolated from the rhizosphere soil of rice, corn, and highland barley in Beijing, Heilongjiang, and Tibet, respectively, in PR China. These strains were Gram-negative, rod-shaped, and have one or two polar flagella. They exhibited optimal growth at 28 °C and pH 7.

View Article and Find Full Text PDF
Article Synopsis
  • The Microbiome Protocols eBook (MPB) connects researchers by providing essential protocols for microbiome experiments and data analysis.
  • The first edition, released in 2020, included 152 well-organized protocols and received positive feedback from the scientific community.
  • Researchers are now encouraged to contribute their own protocols for the upcoming 2nd edition to help further microbiome research.
View Article and Find Full Text PDF

Plant growth-promoting rhizobacterial strain FP607 was isolated from the rhizosphere of beets in Wuhan, China. Strain FP607 exhibited significant antagonism toward several phytopathogenic bacteria, indicating that FP607 may produce antimicrobial metabolites and has a stronger biocontrol efficacy against plant pathogens. Growth-promoting tests showed that FP607 produced indole-3-acetic acid (IAA), NH, and ferritin.

View Article and Find Full Text PDF

Three bacterial strains, FP250, FP821, and FP53, were isolated from the rhizosphere soil of oilseed rape, licorice, and habanero pepper in Anhui Province, Xinjiang Uygur Autonomous Region, and Jiangsu Province, PR China, respectively. All strains were shown to grow at 4-37 °C and pH 6.0-9.

View Article and Find Full Text PDF

This study investigated the change in the microbiome of tomato rhizosphere soils after the invasion of and analyzed the correlation between microbes and soil physicochemical properties. Diversity analyses of the bacteria in healthy and diseased rhizosphere soil samples (HRS and DRS) revealed that HRS had a higher species diversity and were compositionally different from DRS ( ≤ 0.05).

View Article and Find Full Text PDF

Two bacterial strains, FP1935 and FP1962, were isolated from the rhizosphere soil of cucumber and Chieh-qua plants, respectively, in Jilin Province, PR China. These strains were Gram-stain-negative, aerobic, rod-shaped and motile with one or two polar flagella. Analysis of the 16S rRNA gene sequences revealed that they represented members of the genus , with the highest similarity to A3 (99.

View Article and Find Full Text PDF

In the present work, we characterized in detail strain CM-3-T8, which was isolated from the rhizosphere soil of strawberries in Beijing, China, in order to elucidate its taxonomic position. Cells of strain CM-3-T8 were Gram-negative, non-spore-forming, aerobic, short rod. Growth occurred at 25-37 °C, pH 5.

View Article and Find Full Text PDF

Introduction: The black shank disease seriously affects the health of tobacco plants. Conventional control methods have limitations in terms of effectiveness or economic aspects and cause public health concerns. Thus, biological control methods have come into the field, and microorganisms play a key role in suppressing tobacco black shank disease.

View Article and Find Full Text PDF

The bacterial plant pathogen Pseudomonas syringae deploys a type III secretion system (T3SS) to deliver effector proteins into plant cells to facilitate infection, for which many effectors have been characterized for their interactions. However, few T3SS Hrp (ypersensitive esponse and athogenicity) proteins from the T3SS secretion apparatus have been studied for their direct interactions with plants. Here, we show that the P.

View Article and Find Full Text PDF

Flagellins are the main constituents of the flagellar filaments that provide bacterial motility, chemotactic ability, and host immune elicitation ability. Although the functions of flagellins have been extensively studied in bacteria with a single flagellin-encoding gene, the function of multiple flagellin-encoding genes in a single bacterial species is largely unknown. Here, the model plant-growth-promoting bacterium Pseudomonas kilonensis F113 was used to decipher the divergent functions of duplicated flagellins.

View Article and Find Full Text PDF

Background: Plants and their associated microbiota constitute an assemblage of species known as holobionts. The plant seed microbiome plays an important role in nutrient uptake and stress attenuation. However, the core vertically transmitted endophytes remain largely unexplored.

View Article and Find Full Text PDF

Rhizopus soft rot occurs on the succulent tissues of vegetables, fruits, and ornamental plants throughout the world (Cui et al. 2019). When the garlic is in the seedling stage in the fields (Fig.

View Article and Find Full Text PDF

Microbiomes are important for crop performance. However, a deeper knowledge of crop-associated microbial communities is needed to harness beneficial host-microbe interactions. Here, by assessing the assembly and functions of maize microbiomes across soil types, climate zones, and genotypes, we found that the stem xylem selectively recruits highly conserved microbes dominated by Gammaproteobacteria.

View Article and Find Full Text PDF

Ralstonia solanacearum is a widespread plant bacterial pathogen that can launch a range of type III effectors (T3Es) to cause disease. In this study, we isolate a pathogenic R. solanacearum strain named P380 from tomato rhizosphere.

View Article and Find Full Text PDF

2P24 is a plant growth-promoting rhizobacterium (PGPR) isolated from wheat take-all decline soil. Genomic analysis of strain 2P24 revealed the presence of a complete SPI-1 type III secretion system (T3SS) gene cluster on the chromosome with an organization and orientation similar to the SPI-1 T3SS gene clusters of and F113. Phylogenetic analysis revealed that the SPI-1 T3SS gene cluster of strain 2P24 might be obtained from and by horizontal gene transfer.

View Article and Find Full Text PDF

Plasma membrane-localized receptor-like kinases (RLKs) perceive conserved pathogen-associated molecular patterns (PAMPs) in plants, leading to PAMP-triggered immunity (PTI). The Arabidopsis thaliana lectin RLK LecRK-IX.2 has been shown to regulate the bacterial flagellin-derived peptide flg22-induced PTI.

View Article and Find Full Text PDF

is a monophyletic genus containing seven sections. The number of species in grows rapidly due to reliable and complete sequence data contributed from all over the world. In this study agricultural soil samples from Fujiang, Guangdong, Jiangxi, Shandong, Tibet and Zhejiang provinces of China were collected and analyzed for fungal diversity.

View Article and Find Full Text PDF

Strain S150 was isolated from the tobacco rhizosphere as a plant growth-promoting rhizobacterium. It increased plant fresh weight significantly and lateral root development, and it antagonized plant pathogenic fungi but not phytobacteria. Further tests showed that strain S150 solubilized organic phosphate and produced ammonia, siderophore, protease, amylase, and cellulase, but it did not produce indole-3-acetic acid.

View Article and Find Full Text PDF

A novel Gram-stain-positive, rod-shaped, endospore-forming bacterium, which we designated as strain 03113, was isolated from greenhouse soil in Beijing, China. Phylogenetic analysis based on 16S rRNA gene sequences showed strain 03113 is in the genus and had the highest similarity to CCTCC AB 2014277 (98.14%).

View Article and Find Full Text PDF

Plant growth-promoting rhizobacterial strain S58 was isolated from the tobacco rhizosphere. It showed strong antagonism against a battery of plant pathogenic fungi and bacteria, and controlled wheat sharp eyespot and tobacco wildfire diseases efficiently. Further tests showed that strain S58 solubilized organic phosphate and produced siderophore, protease, ammonia, and indole-3-acetic acid.

View Article and Find Full Text PDF

Flagella power bacterial movement through liquids and over surfaces to access or avoid certain environmental conditions, ultimately increasing a cell's probability of survival and reproduction. In some cases, flagella and chemotaxis are key virulence factors enabling pathogens to gain entry and attach to suitable host tissues. However, flagella are not always beneficial; both plant and animal immune systems have evolved receptors to sense the proteins that make up flagellar filaments as signatures of bacterial infection.

View Article and Find Full Text PDF

J5 is an efficient nicotine-degrading bacterial strain that catabolizes nicotine through the pyrrolidine pathway. In our previous study, we used Tn5 transposon mutagenesis to investigate nicotine metabolism-associated genes, and 18 nicotine degradation-deficient mutants were isolated from 16,324 Tn-transformants. Three of the mutants were Tn5 inserts into the gene cluster that encoded an ABC-type, high-affinity, molybdate transporter.

View Article and Find Full Text PDF

The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered innate immune system of Nicotiana benthamiana and other plants by injecting a complex repertoire of type III secretion effector (T3E) proteins. Effectorless polymutant DC3000D36E was used with a modularized system for native delivery of the 29 DC3000 T3Es singly and in pairs.

View Article and Find Full Text PDF