Publications by authors named "Haikun Shang"

A mechanical vibration fault diagnosis is a key means of ensuring the safe and stable operation of transformers. To achieve an accurate diagnosis of transformer vibration faults, this paper proposes a novel fault diagnosis method based on time-shift multiscale increment entropy (TSMIE) combined with CatBoost. Firstly, inspired by the concept of a time shift, TSMIE was proposed.

View Article and Find Full Text PDF

Partial discharge (PD) fault diagnosis is of great importance for ensuring the safe and stable operation of power transformers. To address the issues of low accuracy in traditional PD fault diagnostic methods, this paper proposes a novel method for the power transformer PD fault diagnosis. It incorporates the approximate entropy (ApEn) of symplectic geometry mode decomposition (SGMD) into the optimized bidirectional long short-term memory (BILSTM) neural network.

View Article and Find Full Text PDF

Dissolved gas analysis (DGA) in transformer oil, which analyzes its gas content, is valuable for promptly detecting potential faults in oil-immersed transformers. Given the limitations of traditional transformer fault diagnostic methods, such as insufficient gas characteristic components and a high misjudgment rate for transformer faults, this study proposes a transformer fault diagnosis model based on multi-scale approximate entropy and optimized convolutional neural networks (CNNs). This study introduces an improved sparrow search algorithm (ISSA) for optimizing CNN parameters, establishing the ISSA-CNN transformer fault diagnosis model.

View Article and Find Full Text PDF

Effective diagnosis of vibration fault is of practical significance to ensure the safe and stable operation of power transformers. Aiming at the traditional problems of transformer vibration fault diagnosis, a novel feature extraction method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and multi-scale dispersion entropy (MDE) was proposed. In this paper, CEEMDAN method is used to decompose the original transformer vibration signal.

View Article and Find Full Text PDF

To eliminate the influence of white noise in partial discharge (PD) detection, we propose a novel method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and approximate entropy (ApEn). By introducing adaptive noise into the decomposition process, CEEMDAN can effectively separate the original signal into different intrinsic mode functions (IMFs) with distinctive frequency scales. Afterward, the approximate entropy value of each IMF is calculated to eliminate noisy IMFs.

View Article and Find Full Text PDF

Partial discharge (PD) fault analysis is an important tool for insulation condition diagnosis of electrical equipment. In order to conquer the limitations of traditional PD fault diagnosis, a novel feature extraction approach based on variational mode decomposition (VMD) and multi-scale dispersion entropy (MDE) is proposed. Besides, a hypersphere multiclass support vector machine (HMSVM) is used for PD pattern recognition with extracted PD features.

View Article and Find Full Text PDF