Publications by authors named "Haikun Guo"

Studying the toxic effects of pesticides on bees has consistently been a prominent area of interest for researchers. Nonetheless, existing research has predominantly concentrated on individual toxicity assessments, leaving a gap in our understanding of mixed toxicity. This study delves into the individual and combined toxic effects of abamectin (ABA) and lambda-cyhalothrin (LCY) on honey bees (Apis mellifera) in laboratory settings.

View Article and Find Full Text PDF

Flexible electrolytes with solid self-supporting properties are highly desired in the fields of energy and electronics. However, traditional flexible electrolytes prepared by doping ionic liquids or salt solutions into a polymer matrix pose a risk of liquid component leakage during device operation. In this work, the development of supramolecular ionic network electrolytes using polyoxometalate nanoclusters as supramolecular crosslinkers to solidify bola-type zwitterionic liquids is reported.

View Article and Find Full Text PDF

Nafion, as the mostly used proton exchange membrane material in vanadium redox flow batteries (VRFBs), encounters serious vanadium permeation problems due to the large size difference between its anionic nanophase (3-5 nm) and cationic vanadium ions (∼0.6 nm). Bulk hybridization usually suppresses the vanadium permeation at the expense of proton conductivity since conventional additives tend to randomly agglomerate and damage the nanophase continuity from unsuitable sizes and intrinsic incompatibility.

View Article and Find Full Text PDF

There is a growing risk of pollinators being exposed to multiple fungicides due to the widespread use of fungicides for plant protection. A safety assessment of honeybees exposed to multiple commonly used fungicides is urgently required. Therefore, the acute oral toxicity of the ternary mixed fungicide of ABP (azoxystrobin: boscalid: pyraclostrobin = 1:1:1, m/m/m) was tested on honeybees (), and its sublethal effect on foragers' guts was evaluated.

View Article and Find Full Text PDF

The heavy use of agrochemicals is considered a major factor contributing to the decline in wild honeybee populations. Development of low-toxicity enantiomers of chiral fungicides is the key to reducing the potential threats to honeybees. In this study, we evaluated the enantioselective toxic effects of triticonazole (TRZ) on honeybees and its molecular mechanisms.

View Article and Find Full Text PDF

The widespread use of fungicides for plant protection has increased the potential for pollinator exposure. This study therefore aimed at assessing the acute and chronic effects of fungicides on pollinators. For this purpose, the acute oral toxicity of the common fungicides azoxystrobin, pyraclostrobin, and boscalid to Eastern honeybee Apis cerana cerena was first evaluated, and the chronic effects on multiple aspects were investigated after exposure to a one-tenth medium lethal dose (LD) for 10 days.

View Article and Find Full Text PDF

Supramolecular polymers (SPs) exhibit intriguing benefits in functional soft materials due to their dynamic bonding feature. However, most SPs can only exist in the solution state and fail to form bulk materials, which limits their applications. Here, we report the fabrication of semi-solid bulk SP materials by using polyoxometalate (POM) nanoclusters as supramolecular cross-linkers to solidify a deep eutectic solvent (DES).

View Article and Find Full Text PDF

Honey bees are important and highly efficient pollinators of agricultural crops and have been negatively affected by insecticides in recent years. Circular RNA (circRNA) plays an important role in the regulation of multiple biological and pathological processes; however, its role in the honey bee brain after exposure to dinotefuran is not well understood. Here, the expression profiles and potential modulation networks of circRNAs in the brains of workers (Apis mellifera) were comprehensively investigated using RNA sequencing and bioinformatics.

View Article and Find Full Text PDF

Background: Dinotefuran (CAS No. 165252-70-0), a neonicotinoid insecticide, has been used to protect various crops against invertebrate pests and has been associated with numerous negative sublethal effects on honey bees. Long noncoding RNAs (lncRNAs) play important roles in mediating various biological and pathological processes, involving transcriptional and gene regulation.

View Article and Find Full Text PDF

The development of high-temperature supercapacitors highly relies on the explore of stable polymer electrolyte membranes (PEMs) with high ionic conductivities at high-temperature conditions. However, it is a challenge to achieve both high stability and high conductivity in a PEM at elevated temperatures. Herein, we report the fabrication of high-performance proton conductive PEMs suitable for high-temperature supercapacitors (HT-SCs), which is based on a post-assembly strategy to control the rearrangement of polymer networks in the PEMs.

View Article and Find Full Text PDF

High ionic conductivity, good mechanical strength, strong electrode adhesion, and low volatilization are highly desired properties for flexible solid electrolytes. However, it is difficult to realize all these properties simultaneously, which needs a rational synergy of different electrolyte constituents. Here, we present the use of polyoxometalates as versatile enhancers to fabricate nonvolatile flexible hybrid polymer electrolytes with improved conductive, stretchable, and adhesive properties.

View Article and Find Full Text PDF

Honey bees are important pollinators of wild plants and crops. MicroRNAs (miRNAs) are endogenous regulators of gene expression. In this study, we initially determined that the lethal concentration 50 (LC50) of dinotefuran was 0.

View Article and Find Full Text PDF

Background: The honey bee () is a highly diverse species commonly used for honey production and pollination services. The oviposition of the honey bee queen affects the development and overall performance of the colony. To investigate the ovary activation and oviposition processes on a molecular level, a genome-wide analysis of lncRNAs, miRNAs and mRNA expression in the ovaries of the queens was performed to screen for differentially expressed coding and noncoding RNAs.

View Article and Find Full Text PDF

Studying the genetic signatures of climate-driven selection can produce insights into local adaptation and the potential impacts of climate change on populations. The honey bee (Apis mellifera) is an interesting species to study local adaptation because it originated in tropical/subtropical climatic regions and subsequently spread into temperate regions. However, little is known about the genetic basis of its adaptation to temperate climates.

View Article and Find Full Text PDF