Associative learning enables the adaptive adjustment of behavioral decisions based on acquired, predicted outcomes. The valence of what is learned is influenced not only by the learned stimuli and their temporal relations, but also by prior experiences and internal states. In this study, we used the fruit fly to demonstrate that neuronal circuits involved in associative olfactory learning undergo restructuring during extended periods of low-caloric food intake.
View Article and Find Full Text PDFThe principles of how brain circuits establish themselves during development are largely conserved across animal species. Connections made during embryonic development that are appropriate for an early life stage are frequently remodelled later in ontogeny via pruning and subsequent regrowth to generate adult-specific connectivity. The mushroom body of the fruit fly is a well-established model circuit for examining the cellular mechanisms underlying neurite remodelling.
View Article and Find Full Text PDFStartle-induced locomotion is commonly used in research to monitor locomotor reactivity and its progressive decline with age or under various neuropathological conditions. A widely used paradigm is startle-induced negative geotaxis (SING), in which flies entrapped in a narrow column react to a gentle mechanical shock by climbing rapidly upwards. Here we combined manipulation of neuronal activity and splitGFP reconstitution across cells to search for brain neurons and putative circuits that regulate this behavior.
View Article and Find Full Text PDFAnimal behavior is, on the one hand, controlled by neuronal circuits that integrate external sensory stimuli and induce appropriate motor responses. On the other hand, stimulus-evoked or internally generated behavior can be influenced by motivational conditions, e.g.
View Article and Find Full Text PDF