Publications by authors named "Haik Mkhikian"

N-glycan branching is a potent and multifaceted negative regulator of proinflammatory T cell and B cell function. By promoting multivalent galectin-glycoprotein lattice formation at the cell surface, branching regulates clustering and/or endocytosis of the TCR complex (TCR+CD4/CD8), CD45, CD25, BCR, TLR2 and TLR4 to inhibit T cell and B cell activation/proliferation and proinflammatory TH1 and TH17 over TH2 and induced T regulatory cell responses. In addition, branching promotes cell surface retention of the growth inhibitory receptor CTLA-4.

View Article and Find Full Text PDF

Impaired T cell immunity with aging increases mortality from infectious disease. The branching of Asparagine-linked glycans is a critical negative regulator of T cell immunity. Here we show that branching increases with age in females more than males, in naïve more than memory T cells, and in CD4 more than CD8 T cells.

View Article and Find Full Text PDF

Hashimoto's encephalopathy (HE) is a presumed autoimmune disorder associated with anti-thyroid autoantibodies and signs and symptoms of encephalopathy. A sub-type of HE is associated with cerebellar dysfunction and ataxia. Immunosuppressive therapy, particularly corticosteroid treatment, is utilized in the majority of cases.

View Article and Find Full Text PDF

Rapidly proliferating cells switch from oxidative phosphorylation to aerobic glycolysis plus glutaminolysis, markedly increasing glucose and glutamine catabolism. Although Otto Warburg first described aerobic glycolysis in cancer cells >90 years ago, the primary purpose of this metabolic switch remains controversial. The hexosamine biosynthetic pathway requires glucose and glutamine for de novo synthesis of UDP-GlcNAc, a sugar-nucleotide that inhibits receptor endocytosis and signaling by promoting N-acetylglucosamine branching of Asn (N)-linked glycans.

View Article and Find Full Text PDF

Essential biological systems employ self-correcting mechanisms to maintain cellular homeostasis. Mammalian cell function is dynamically regulated by the interaction of cell surface galectins with branched N-glycans. Here we report that N-glycan branching deficiency triggers the Golgi to generate bioequivalent N-glycans that preserve galectin-glycoprotein interactions and cellular homeostasis.

View Article and Find Full Text PDF

Positive selection of diverse yet self-tolerant thymocytes is vital to immunity and requires a limited degree of T cell antigen receptor (TCR) signaling in response to self peptide-major histocompatibility complexes (self peptide-MHCs). Affinity of newly generated TCR for peptide-MHC primarily sets the boundaries for positive selection. We report that N-glycan branching of TCR and the CD4 and CD8 coreceptors separately altered the upper and lower affinity boundaries from which interactions between peptide-MHC and TCR positively select T cells.

View Article and Find Full Text PDF
Article Synopsis
  • A lack of the Golgi N-glycan branching enzyme Mgat5 in mice leads to heightened T cell activity, increased endocytosis of CTLA-4, and autoimmune responses similar to multiple sclerosis (MS).
  • Genetic and environmental factors linked to MS can lower N-glycan branching in T cells; these include variations in IL2RA and IL7RA genes, as well as vitamin D3 deficiency.
  • Intronic variants in MGAT5 are significantly associated with diminished N-glycan branching and CTLA-4 surface expression, contributing to MS risk alongside other genetic factors (p=5.79×10(-9)).
View Article and Find Full Text PDF

Autoimmune diseases such as multiple sclerosis (MS) result from complex and poorly understood interactions of genetic and environmental factors. A central role for T cells in MS is supported by mouse models, association of the major histocompatibility complex region, and association of critical T cell growth regulator genes such as interleukin-2 receptor (IL-2RA) and interleukin-7 receptor (IL-7RA). Multiple environmental factors (vitamin D(3) deficiency and metabolism) converge with multiple genetic variants (IL-7RA, IL-2RA, MGAT1, and CTLA-4) to dysregulate Golgi N-glycosylation in MS, resulting in T cell hyperactivity, loss of self-tolerance and in mice, a spontaneous MS-like disease with neurodegeneration.

View Article and Find Full Text PDF

T cell activation and self-tolerance are tightly regulated to provide effective host defense against foreign pathogens while deflecting inappropriate autoimmune responses. Golgi Asn (N)-linked protein glycosylation coregulates homeostatic set points for T cell growth, differentiation, and self-tolerance to influence risk of autoimmune disorders such as multiple sclerosis (MS). Human autoimmunity is a complex trait that develops from intricate and poorly understood interactions between an individual's genetics and their environmental exposures.

View Article and Find Full Text PDF

How environmental factors combine with genetic risk at the molecular level to promote complex trait diseases such as multiple sclerosis (MS) is largely unknown. In mice, N-glycan branching by the Golgi enzymes Mgat1 and/or Mgat5 prevents T cell hyperactivity, cytotoxic T-lymphocyte antigen 4 (CTLA-4) endocytosis, spontaneous inflammatory demyelination and neurodegeneration, the latter pathologies characteristic of MS. Here we show that MS risk modulators converge to alter N-glycosylation and/or CTLA-4 surface retention conditional on metabolism and vitamin D(3), including genetic variants in interleukin-7 receptor-α (IL7RA*C), interleukin-2 receptor-α (IL2RA*T), MGAT1 (IV(A)V(T-T)) and CTLA-4 (Thr17Ala).

View Article and Find Full Text PDF

In Parkinson's disease, multiple cell types in many brain regions are afflicted. As a consequence, a therapeutic strategy that activates a general neuroprotective response may be valuable. We have previously shown that Notch ligands support neural precursor cells in vitro and in vivo.

View Article and Find Full Text PDF