Publications by authors named "Haijun Bi"

This study investigated the effects of co-fermentation of T. delbrueckii and S. cerevisiae on the volatile composition and sensory characteristics of blueberry wines.

View Article and Find Full Text PDF

This study aimed to improve the aroma quality of blueberry wine by employing cultivar selection and precise berry sorting. We conducted a comprehensive analysis of volatile profiles in blueberry wines derived from nine cultivars commonly cultivated in the middle region of China. 'Misty' and 'V3' blueberry wines exhibited pronounced floral aromas, closely linked to elevated terpenoid and phenylacetaldehyde content.

View Article and Find Full Text PDF

Blueberries with 20%, 30%, and 40% weight loss were used for winemaking, aiming to explore the feasibility of applying postharvest dehydration for improving blueberry wine aroma. Postharvest dehydration decreased the titratable acidity of blueberries and their resultant wines. Total anthocyanins and phenols in blueberries with 30% weight loss were increased by 25.

View Article and Find Full Text PDF

Theanine is a distinctive amino acid in tea that plays a vital role in tea flavor during the roasting process. Model thermal reactions of total amino acids and sugars with different roasting conditions (low-fire, middle-fire, and high-fire) showed theanine competitively inhibited the formation of indole, skatole, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, and Strecker aldehydes, while greatly stimulated the production of roasty pyrazines. In addition, highest amounts of pyrazines were obtained under high-fire degree.

View Article and Find Full Text PDF

Technology for recycling retired lithium batteries has become increasingly environment-friendly and efficient. In traditional recovery methods, pyrometallurgy or hydrometallurgy is often used as an auxiliary treatment method, which results in secondary pollution and increases the cost of harmless treatment. In this article, a new method for combined mechanical recycling of waste lithium iron phosphate (LFP) batteries is proposed to realize the classification and recycling of materials.

View Article and Find Full Text PDF

Lithium iron phosphate (LFP) batteries contain metals, toxic electrolytes, organic chemicals and plastics that can lead to serious safety and environmental problems when they are improperly disposed of. The published literature on recovering spent LFP batteries mainly focuses on policy-making and conceptual design. The production line of recovering spent LFP batteries and its detailed operation are rarely reported.

View Article and Find Full Text PDF

This study developed a physical separation process that recovers active cathode materials from current collectors in spent lithium-ion power batteries (LIBs). The physical separation process, implemented via thermal and mechanical treatments, was examined based on cohesive zone models (CZMs) and verified by physical separation experiments. The most efficient condition was determined by optimising the key parameters (temperature and time) of selective heating.

View Article and Find Full Text PDF

Spent lithium iron phosphate (LFP) batteries contain abundant strategic lithium resources and are thus considered attractive secondary lithium sources. However, these batteries may contaminate the environment because they contain hazardous materials. In this work, a novel process involving low-temperature heat treatment is used as an alternative pretreatment method for recycling spent LFP batteries.

View Article and Find Full Text PDF

The consumption of lithium iron phosphate (LFP)-type lithium-ion batteries (LIBs) is rising sharply with the increasing use of electric vehicles (EVs) worldwide. Hence, a large number of retired LFP batteries from EVs are generated annually. A recovery technology for spent LFP batteries is urgently required.

View Article and Find Full Text PDF

Eddy current separation (ECS) is an environment-friendly technology for separating nonferrous metallic particles whose size was from 2 mm to 10 mm. No wastes are generated in ECS. ECS quality of nonferrous metals from solid wastes is rather low in the production practice of spent lithium iron phosphate (LFP) batteries recovering.

View Article and Find Full Text PDF

With the rapid development of the electric vehicle market since 2012, lithium-iron phosphate (LFP) batteries face retirement intensively. Numerous LFP batteries have been generated given their short service life. Thus, recycling spent LFP batteries is crucial.

View Article and Find Full Text PDF

The recycling processes of spent lithium iron phosphate batteries comprise thermal, wet, and biological and mechanical treatments. Limited research has been conducted on the combined mechanical process recycling technology and such works are limited to the separation of metal and non-metal materials, which belongs to mechanical recovery. In this article the combined mechanical process recycling technology of spent lithium iron phosphate batteries and the separation of metals has been investigated.

View Article and Find Full Text PDF

A novel approach to recycling of copper and aluminum fragments in the crushed products of spent lithium iron phosphate batteries was proposed to achieve their eco-friendly processing. The model of pneumatic separation that determines the optimal airflow velocity was established using aerodynamics. The influence of the airflow velocity, and the density and thickness, and their ratios, of the aluminum and copper fragments on pneumatic separation were evaluated.

View Article and Find Full Text PDF