Glioblastoma (GBM) persists as a highly fatal malignancy, with current clinical treatments showing minimal progress over years. Interstitial photodynamic therapy (iPDT) holds promise due to its minimally invasive nature and low toxicity but is impeded by poor photosensitizer penetration and inadequate GBM targeting. Here, we developed a biomimetic pure-drug nanomedicine (MM@CT), which co-assembles the photosensitizer chlorin e6 (Ce6) and the first-line chemotherapeutic drug (temozolomide, TMZ) for GBM, then camouflaged with macrophage membranes.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM), particularly the deep-seated tumor where surgical removal is not feasible, poses great challenges for clinical treatments due to complicated biological barriers and the risk of damaging healthy brain tissue. Here, we hierarchically engineer a self-adaptive nanoplatform (SAN) that overcomes delivery barriers by dynamically adjusting its structure, surface charge, particle size, and targeting moieties to precisely distinguish between tumor and parenchyma cells. We further devise a AN-uided ntuitive and recision ntervention (SGIPi) strategy which obviates the need for sophisticated facilities, skilled operations, and real-time magnetic resonance imaging (MRI) guidance required by current MRI-guided laser or ultrasound interventions.
View Article and Find Full Text PDFThe activation of STING pathway has emerged as a promising strategy in cancer immunotherapy. However, challenges associated with unfavorable physicochemical properties and potential off-target toxicities have limited the application of STING agonists. Here, we develop an amphiphilic and cationic charged porphyrin-polymer to electrostatically load the STING agonist (MSA-2) within a micellar structure, thereby enhancing carrier compatibility and drug-loading content of MSA-2.
View Article and Find Full Text PDFSepsis-associated encephalopathy (SAE) is a devastating complication of sepsis, affecting approximately 70% of patients with sepsis in intensive care units (ICU). Although the pathophysiological mechanisms remain elusive, sepsis is typically accompanied by systemic inflammatory response syndrome (SIRS) and hyper-oxidative conditions. Here, we introduce a biomimetic nanomodulator (mAOI NP) that specifically targets inflammation site and simultaneously regulates oxidative and inflammatory stresses.
View Article and Find Full Text PDFStimulator of interferon genes (STING) agonists have shown promise in cancer treatment by stimulating the innate immune response, yet their clinical potential has been limited by inefficient cytosolic entry and unsatisfactory pharmacological activities. Moreover, aggressive tumors with "cold" and immunosuppressive microenvironments may not be effectively suppressed solely through innate immunotherapy. Herein, we propose a multifaceted immunostimulating nanoparticle (Mn-MC NP), which integrates manganese II (Mn) coordinated photosensitizers (chlorin e6, Ce6) and STING agonists (MSA-2) within a PEGylated nanostructure.
View Article and Find Full Text PDFConventional nanomedicines typically employ a significant amount of excipients as carriers for therapeutic delivery, resulting in generally low drug-loading and compromised anti-cancer efficacy. Here, we propose a small-molecule nanomedicine (CMC NP) directly assembled using a chemotherapeutic drug (chlorambucil, CBL) and a phototherapeutic agent (chlorin e6, Ce6), and stabilized by metal coordination. The CMC NP exhibits exceptionally high drug loading (89.
View Article and Find Full Text PDFIschemia/reperfusion (IR)-induced acute lung injury (ALI) has a high mortality rate. Reactive oxygen species (ROS) play a crucial role in causing cellular damage and death in IR-induced ALI. In this work, we developed a biomimetic lung-targeting nanoparticle (PC@MB) as an antioxidative lung protector for treating IR-induced ALI.
View Article and Find Full Text PDFBladder cancer (BCa) is one of the most common malignancies worldwide. Although multiple efforts have been made, the 5-year survival rate of patients with BCa remains unchanged in recent years. Overexpression of the epidermal growth factor receptor (EGFR) is found in ≈74% of BCa tissue specimens; however, current EGFR-based targeted therapies show little benefit for BCa patients, as the EGFR downstream pathways appear to be circumvented by other receptor tyrosine kinases (RTKs).
View Article and Find Full Text PDFAlthough immunotherapies have made progress in cancer treatment, their clinical response rates vary widely and are typically low due to sparse immune cell infiltration (immune "cold") and suppressive tumor immune microenvironment (TIME). A simple yet effective approach that integrates a variety of immune-stimulating and TIME-modulating functions could potentially address this clinical challenge. Herein, we conjugate two small molecules, including a photosensitizer (pyropheophorbide-a, PA) and a Toll-like receptor 7/8 agonist (resiquimod, R848), into prodrug (PA-R848) that self-assembles into PA-R848 esterase responsive nanoparticles (PARE NPs) with 100% drug composition and synergistic photo-/immune- therapeutic effects.
View Article and Find Full Text PDFCancer is a complex pathological phenomenon that needs to be treated from different aspects. Herein, we developed a size/charge dually transformable nanoplatform (PDR NP) with multiple therapeutic and immunostimulatory properties to effectively treat advanced cancers. The PDR NPs exhibit three different therapeutic modalities (chemotherapy, phototherapy and immunotherapy) that can be used to effectively treat primary and distant tumors, and reduce recurrent tumors; the immunotherapy is simultaneously activated by three major pathways, including toll-like receptor, stimulator of interferon genes and immunogenic cell death, effectively suppresses the tumor development in combination with an immune checkpoint inhibitor.
View Article and Find Full Text PDFBackground: Prussian blue (PB) nanoparticles (NPs) have been intensively investigated for medical applications, but an in-depth toxicological investigation of PB NPs has not been implemented. In the present study, a comprehensive investigation of the fate and risks of PB NPs after intravenous administration was carried out by using a mouse model and an integrated methodology of pharmacokinetics, toxicology, proteomics, and metabolomics.
Results: General toxicological studies demonstrated that intravenous administration of PB NPs at 5 or 10 mg/kg could not induce obvious toxicity in mice, while mice treated with a relatively high dose of PB NPs at 20 mg/kg exhibited loss of appetite and weight decrease in the first two days postinjection.
To improve the drug loading, tumor targeting, and delivery simplicity of hydrophilic drugs, we propose a supramolecular assembly strategy that potentially benefits a wide range of hydrophilic drug delivery. Firstly, we choose a hydrophilic drug (tirapazamine) as a model drug to directly co-assemble with chlorin e6 (Ce6) at different molar ratios, and systematically evaluate the resultant Ce6-tirapazamine nanoparticles (CT NPs) in aspects of size distribution, polydispersity, morphology, optical properties and molecular dynamics simulation. Based on the assembling facts between Ce6 and tirapazamine, we summarize a plausible rule of the supramolecular assembly for hydrophilic drugs.
View Article and Find Full Text PDFThe application of numerous chemotherapeutic drugs has been limited due to poor solubility, adverse side effects, and even multidrug resistance in patients. Polymeric micelles with reversibly cross-linked structures provide a promising solution to these issues. Herein, we optimized and synthesized programable-released disulfide cross-linked micelle (PDCM) based on our previous well-defined dendrimers to deliver the antitumor drug betulinic acid (BA) and paclitaxel (PDCM@PTX) and evaluated the therapeutic efficacy of multidrug-resistant (MDR) simulative orthotopic intraperitoneal ovarian cancer mice models.
View Article and Find Full Text PDFExploration (Beijing)
December 2022
Nanomedicines are attractive paradigms to deliver drugs, contrast agents, immunomodulators, and gene editors for cancer therapy and diagnosis. However, the currently developed nanomedicine suffers from poor serum stability, premature drug release, and lack of responsiveness. Crosslinking strategy can be utilized to overcome these shortcomings by employing stimuli-responsive chemical bonds to tightly hold the nanostructure and releasing the payloads spatiotemporally in a highly controlled manner.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is an aggressive and malignant brain tumor with high mortality. The current treatment strategies are still unsatisfactory for this devastating disease. Here, we developed a glucose-functionalized liposome (gLTP) that co-loads temozolomide (TMZ) and pro-apoptotic peptide (PAP) to achieve synergistic efficacy towards GBM.
View Article and Find Full Text PDFNanoparticle-based chemophotothermal therapy (CPT) is a promising treatment for multidrug resistant tumors. In this study, a drug nanococktail of DIR825@histone was developed by employing doxorubicin (DOX), NIR dye IR825 and human histones for interventional nucleus-targeted CPT of multidrug resistant tumors with an interventional laser. After localized intervention, DIR825@histone penetrated tumor tissues by transcytosis, efficiently entered tumor cells and targeted the cell nuclei.
View Article and Find Full Text PDFDevelopment of liposomal nanomedicine with robust stability, high drug loading and synergistic efficacy is a promising strategy for effective cancer therapy. Here, we present an iron-crosslinked rosmarinic liposome (Rososome) which can load high contents of drugs (including 25.8% rosmarinic acid and 9.
View Article and Find Full Text PDFGadolinium-based contrast agents (GBCAs) are the most widely used T contrast agents for magnetic resonance imaging (MRI) and have achieved remarkable success in clinical cancer diagnosis. However, GBCAs could cause severe nephrogenic systemic fibrosis to patients with renal insufficiency. Nevertheless, GBCAs are quickly excreted from the kidneys, which shortens their imaging window and prevents long-term monitoring of the disease per injection.
View Article and Find Full Text PDFThe efficacy of therapeutics for brain tumors is seriously hampered by multiple barriers to drug delivery, including severe destabilizing effects in the blood circulation, the blood-brain barrier/blood-brain tumor barrier (BBB/BBTB), and limited tumor uptake. Here, a sequential targeting in crosslinking (STICK) nanodelivery strategy is presented to circumvent these important physiological barriers to improve drug delivery to brain tumors. STICK nanoparticles (STICK-NPs) can sequentially target BBB/BBTB and brain tumor cells with surface maltobionic acid (MA) and 4-carboxyphenylboronic acid (CBA), respectively, and simultaneously enhance nanoparticle stability with pH-responsive crosslinkages formed by MA and CBA in situ.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
May 2020
Nanomedicines have made important contributions in the development of cancer therapies due to their tumor selectivity, multifunctionality, and synergistic effect between the payloads. In addition to the required pharmaceutical ingredients, nanomedicines are generally composed of nonpharmaceutical excipients. These excipients generally form a large proportion of the nanomedicine, and they may have potential toxicity and greatly increase the cost for drug development.
View Article and Find Full Text PDFChemotherapy is widely used in combination with high-intensity focused ultrasound (HIFU) ablation for cancer therapy; however, the spatial and temporal integration of chemotherapy and HIFU ablation remains a challenge. Here, temperature-sensitive plateletsomes (TSPs) composed of platelet (PLT) membrane, 1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine were developed to adequately integrate chemotherapy with HIFU tumor ablation . : The thermosensitive permeability of TSPs was evaluated under both water bath heating and HIFU hyperthermia.
View Article and Find Full Text PDFMultidrug resistance (MDR) poses a great challenge to cancer therapy. It is difficult to inhibit the growth of MDR cancer due to its chemoresistance. Furthermore, MDR cancers are more likely to metastasize, causing a high mortality among cancer patients.
View Article and Find Full Text PDFSheng Wu Yi Xue Gong Cheng Xue Za Zhi
December 2016
Prussian blue(PB),a kind of ferrous ferricyanide composed of Fe2+and Fe3+,has been approved by Food and Drug Administration(FDA,USA)as an oral drug for the treatment of thallium and cesium poisoning.The biosafety of PB has been proved by long-term clinical trials.In recent years,PB nano-materials have attracted intensive research interests for medical application,especially for tumor imaging and treatment of cancer.
View Article and Find Full Text PDF