Single-mode polymer photonics is of significant interest to short-reach data communications, photonic packaging, sensing, and biophotonic light delivery. We report here experimental demonstration of mechanically flexible waveguides fabricated by using commercial off-the-shelf biocompatible polymers that claim a record low propagation loss of 0.11 dB/cm near 850 nm wavelength.
View Article and Find Full Text PDFWe present a novel CMOS-compatible fabrication technique for convex micro-nano lens arrays (MNLAs) with high packing density on the wafer scale. By means of conformal chemical vapor deposition (CVD) of hydrogenated amorphous silicon (a-Si:H) following patterning of silicon pillars via electron beam lithography (EBL) and plasma etching, large areas of a close packed silicon lens array with the diameter from a few micrometers down to a few hundred nanometers was fabricated. The resulting structure shows excellent surface roughness and high uniformity.
View Article and Find Full Text PDFIn this paper, finite-aperture diffractive optical element with its critical dimension smaller than illumination wavelength is modeled and optimized using an integrated method. This method employs rigorous analysis model based on Finite Difference Time Domain (FDTD), and simulated annealing (SA) global search algorithm. Numerical results reveal that the diffraction efficiency of the 8-step microlens quickly climbs to its global optimum along with the optimization process, which manifests its global search ability.
View Article and Find Full Text PDF