Osteosarcopenia (OS), a complex degenerative disorder, is characterized by the concurrent decline in skeletal muscle mass and bone mineral density (BMD), posing an enormous health hazard for the elderly population. Despite its clinical relevance, the pathophysiological mechanisms underlying OS are not fully understood, underscoring the necessity for a deeper comprehension of its etiology to facilitate effective treatment strategies. The development of a reliable animal model is pivotal in this endeavor.
View Article and Find Full Text PDFThis research explores the efficacy of integrating nonlinear single-degree-of-freedom systems in the vibration control of rod coupling systems. By interlinking two rods with a nonlinear single-degree-of-freedom system as the intermediary, the study employs the Lagrange method (LM) to forecast nonlinear vibrational behaviors. The findings, substantiated by numerical analyses, affirm the precision of LM in gauging the amplitude responses when such a nonlinear system is utilized.
View Article and Find Full Text PDFThis study aims to potential the potential utilization of nonlinear energy sinks (NESs) for controlling longitudinal vibrations in a double-rod system. The research introduces a longitudinal vibration prediction model for a double-rod system equipped with NESs. The generalized Hamilton principle is employed to derive governing equations of the double-rod system.
View Article and Find Full Text PDFIn engineering, shafting systems are typically subjected to longitudinal vibration excitations, which may result in unwanted vibration. To study the control of longitudinal vibration in shafting systems, they can be simplified to rod structures. Currently, engineers have attempted to apply the nonlinear principle to design nonlinear supports to control the vibration of flexible structures.
View Article and Find Full Text PDF