Plant Physiol Biochem
December 2022
Lettuce is a common vegetable in hydroponic production. In this paper, a selenium (Se)-biofortification method was provided. The Se content, speciation, and the effects of different concentrations of selenate and selenite on lettuce growth and amino acids were investigated.
View Article and Find Full Text PDFCervical squamous cell carcinoma (CSCC) is the major pathological type of cervical cancer (CC), the second most prevalent reproductive system malignant tumor threatening the health of women worldwide. The prognosis of CSCC patients is largely affected by the tumor immune microenvironment (TIME); however, the biomarker landscape related to the immune microenvironment of CSCC and patient prognosis is less characterized. Here, we analyzed RNA-seq data of CSCC patients from The Cancer Genome Atlas (TCGA) database by dividing it into high- and low-immune infiltration groups with the MCP-counter and ESTIMATE R packages.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global crisis; however, our current understanding of the host immune response to SARS-CoV-2 infection remains limited. Herein, we performed RNA sequencing using peripheral blood from acute and convalescent patients and interrogated the dynamic changes of adaptive immune response to SARS-CoV-2 infection over time. Our results revealed numerous alterations in these cohorts in terms of gene expression profiles and the features of immune repertoire.
View Article and Find Full Text PDFPrevious studies have established that disturbed lymphocytes are involved in the pathogenesis of Vogt-Koyanagi-Harada (VKH) syndrome. Accordingly, glucocorticoids (GCs), with their well-recognized immune-suppressive function, have been widely used for treatment of VKH patients with acute relapses. However, the systemic response of diverse immune cells to GC therapy in VKH is poorly characterized.
View Article and Find Full Text PDFRoles of protein N-glycosylation in chitosan oligosaccharide (COS) induced resistance were investigated in the present study. Results demonstrated that N-glycosylation deficient Arabidopsis mutants (stt3a and ManI) were more susceptible against Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) than wild type (WT) plants.
View Article and Find Full Text PDFChitosan oligosaccharide (COS) is an effective plant immunity elicitor; however, its induction mechanism in plants is complex and needs further investigation. In this study, the Arabidopsis-Pseudomonas syringae pv. tomato DC3000 (hereafter called DC3000) interaction was used to investigate the induction effect and the underlying mechanisms of COS.
View Article and Find Full Text PDFChitosan is one of the most abundant carbohydrate biopolymers in the world, and chitosan oligosaccharide (COS), which is prepared from chitosan, is a plant immunity regulator. The present study aimed to validate the effect of COS on inducing resistance to tobacco mosaic virus (TMV) in Arabidopsis and to investigate the potential defence-related signalling pathways involved. Optimal conditions for the induction of TMV resistance in Arabidopsis were COS pretreatment at 50 mg/L for 1 day prior to inoculation with TMV.
View Article and Find Full Text PDF