Publications by authors named "Haihe Shi"

Quantifying the features of mitochondrial genome structural variation is crucial for understanding its contribution to complexity. Accurate quantification and interpretation of organizational diversity can help uncover biological evolutionary laws and patterns. The current qMGR approach accumulates the changes in two adjacent genes to calculate the rearrangement frequency RF of each single gene and the rearrangement score RS for specific taxa in the mitogenomes of a given taxonomic group.

View Article and Find Full Text PDF

Prediction of RNA secondary structure is an important part of bioinformatics genomics research. Mastering RNA secondary structure can help us to better analyze protein synthesis, cell differentiation, metabolism, and genetic processes and thus reveal the genetic laws of organisms. Comparative sequence analysis, support vector machine, centroid method, and other algorithms in RNA secondary structure prediction algorithms often use dynamic programming algorithm to predict RNA secondary structure because of their huge time and space consumption and complex data structure.

View Article and Find Full Text PDF

As a key algorithm in bioinformatics, sequence alignment algorithm is widely used in sequence similarity analysis and genome sequence database search. Existing research focuses mainly on the specific steps of the algorithm or is for specific problems, lack of high-level abstract domain algorithm framework. Multiple sequence alignment algorithms are more complex, redundant, and difficult to understand, and it is not easy for users to select the appropriate algorithm; some computing errors may occur.

View Article and Find Full Text PDF

Unsigned reverse genome rearrangement is an important part of bioinformatics research, which is widely used in biological similarity and homology analysis, revealing biological inheritance, variation, and evolution. Branch and bound, simulated annealing, and other algorithms in unsigned reverse genome rearrangement algorithm are rare in practical application because of their huge time and space consumption, and greedy algorithms are mostly used at present. By deeply analyzing the domain of unsigned reverse genome rearrangement algorithm based on greedy strategy (unsigned reverse genome rearrangement algorithm (URGRA) based on greedy strategy), the domain features are modeled, and the URGRA algorithm components are interactively designed according to the production programming method.

View Article and Find Full Text PDF

After years of development, the complexity of the biological sequence alignment algorithm is gradually increasing, and the lack of high abstract level domain research leads to the complexity of its algorithm development and improvement. By applying the idea of software components to the design and development of algorithms, the development efficiency and reliability of biological sequence alignment algorithms can be effectively improved. The component assembly platform applies related assembly technology, which simplifies the operation difficulty of component assembly and facilitates the maintenance and optimization of the algorithm.

View Article and Find Full Text PDF

The multiple longest common subsequence (MLCS) problem involves finding all the longest common subsequences of multiple character sequences. This problem is encountered in a variety of areas, including data mining, text processing, and bioinformatics, and is particularly important for biological sequence analysis. By taking the MLCS problem and algorithms for its solution as research domain, this study analyzes the domain of multiple longest common subsequence algorithms, extracts features that algorithms in the domain do and do not have in common, and creates a domain feature model for the MLCS problem by using generic programming, domain engineering, abstraction, and related technologies.

View Article and Find Full Text PDF

In recent years, there has been an explosive increase in the amount of bioinformatics data produced, but data are not information. The purpose of bioinformatics research is to obtain information with biological significance from large amounts of data. Multiple sequence alignment is widely used in sequence homology detection, protein secondary and tertiary structure prediction, phylogenetic tree analysis, and other fields.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvbtc0h7up2liu0nb2rcfjlihi0k7ncvr): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once