Publications by authors named "Haigh J"

About 5% of patients with cutaneous squamous cell carcinoma (cSCC) have a poor prognosis which is associated with a loss of tumor differentiation, invasion and metastasis, all of which are linked to the process of epithelial-to-mesenchymal plasticity (EMP). Here, we showed that the EMP-associated transcription factor ZEB2 drives cSCC heterogeneity which resembles biphasic carcinosarcoma-like tumors. Single cell RNA sequencing revealed distinct subpopulations ranging from fully epithelial (E) to intermediate (EM) to fully mesenchymal (M), associated with the gradual loss of cell surface markers EPCAM, CDH1, ITGB4, and CD200.

View Article and Find Full Text PDF

Salivary gland cancers (SGC) are rare tumours with limited availability of systemic therapies. Some SGC subtypes overexpress HER2, and this represents a potential therapeutic target, but the evidence base is limited. This study sought to analyse real-world data on the efficacy of HER2-directed therapies in SGC.

View Article and Find Full Text PDF
Article Synopsis
  • Intracellular calcium overload contributes to heart dysfunction, and understanding how to regulate calcium levels could help develop better heart failure therapies.
  • The transcription factor ZEB2, induced by HIF1α in low-oxygen conditions, helps manage genes related to calcium handling and heart contraction, thus protecting against heart issues.
  • ZEB2 enhances calcium uptake by increasing phosphorylation of phospholamban, while also reducing harmful signaling that leads to heart remodeling, making it a key player in maintaining heart function.
View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a diverse malignancy originating from myeloid progenitor cells, with significant genetic and clinical variability. Modern classification systems like those from the World Health Organization (WHO) and European LeukemiaNet use immunophenotyping, molecular genetics, and clinical features to categorize AML subtypes. This classification highlights crucial genetic markers such as FLT3, NPM1 mutations, and MLL-AF9 fusion, which are essential for prognosis and directing targeted therapies.

View Article and Find Full Text PDF

Background: Adult mammalian cardiomyocytes have limited proliferative capacity, but in specifically induced contexts they traverse through cell-cycle reentry, offering the potential for heart regeneration. Endogenous cardiomyocyte proliferation is preceded by cardiomyocyte dedifferentiation (CMDD), wherein adult cardiomyocytes revert to a less matured state that is distinct from the classical myocardial fetal stress gene response associated with heart failure. However, very little is known about CMDD as a defined cardiomyocyte cell state in transition.

View Article and Find Full Text PDF

Biopharmaceutical manufacture is transitioning from batch to integrated and continuous biomanufacturing (ICB). The common framework for most ICB, potentially enables a global biomanufacturing ecosystem utilizing modular and multi-function manufacturing equipment. Integrating unit operation hardware and software from multiple suppliers, complex supply chains enabled by multiple customized single-use flow paths, and large volume buffer production/storage make this ICB vision difficult to achieve with commercially available manufacturing equipment.

View Article and Find Full Text PDF

Thyroid cancer is the most common endocrine malignancy and several genetic events have been described to promote the development of thyroid carcinogenesis. Besides the effects of specific mutations on thyroid cancer development, the molecular mechanisms controlling tumorigenesis, tumor behavior, and drug resistance are still largely unknown. Cancer organoids have been proposed as a powerful tool to study aspects related to tumor development and progression and appear promising to test individual responses to therapies.

View Article and Find Full Text PDF
Article Synopsis
  • - The T2K experiment reports enhanced measurements of neutrino oscillation parameters through new proton-on-target (POT) neutrino data, significantly improving analysis methods with a major focus on the near detector's new selection procedures.
  • - This analysis is the first to utilize data from the NA61/SHINE experiment, helping to refine the neutrino flux model and enhance the neutrino interaction model by incorporating new nuclear effects.
  • - Both frequentist and Bayesian approaches indicate a preference for normal mass ordering and a nearly maximal CP-violating phase, with notable exclusions and constraints on certain parameters aligning with past T2K studies.
View Article and Find Full Text PDF

The functionality and longevity of hematopoietic tissue is ensured by a tightly controlled balance between self-renewal, quiescence, and differentiation of hematopoietic stem cells (HSCs) into the many different blood lineages. Cell fate determination in HSCs is influenced by signals from extrinsic factors (e.g.

View Article and Find Full Text PDF

Aberrant AKT activation occurs in a number of cancers, metabolic syndrome, and immune disorders, making it an important target for the treatment of many diseases. To monitor spatial and temporal AKT activity in a live setting, we generated an Akt-FRET biosensor mouse that allows longitudinal assessment of AKT activity using intravital imaging in conjunction with image stabilization and optical window technology. We demonstrate the sensitivity of the Akt-FRET biosensor mouse using various cancer models and verify its suitability to monitor response to drug targeting in spheroid and organotypic models.

View Article and Find Full Text PDF

Interleukin-7 (IL-7) supports the growth and chemoresistance of T-cell acute lymphoblastic leukemia (T-ALL), particularly the early T-cell precursor subtype (ETP-ALL), which frequently has activating mutations of IL-7 signaling. Signal transducer and activator of transcription (STAT5) is an attractive therapeutic target because it is almost universally activated in ETP-ALL, even in the absence of mutations of upstream activators such as the IL-7 receptor (IL-7R), Janus kinase, and Fms-like tyrosine kinase 3 (FLT3). To examine the role of activated STAT5 in ETP-ALL, we have used a Lmo2-transgenic (Lmo2Tg) mouse model in which we can monitor chemoresistant preleukemia stem cells (pre-LSCs) and leukemia stem cells (LSCs) that drive T-ALL development and relapse following chemotherapy.

View Article and Find Full Text PDF

Background: The gene encoding the transcription factor, Grainyhead-like 3 (Grhl3), plays critical roles in mammalian development and homeostasis. Grhl3-null embryos exhibit thoraco-lumbo-sacral spina bifida and soft-tissue syndactyly. Additional studies reveal that these embryos also exhibit an epidermal proliferation/differentiation imbalance.

View Article and Find Full Text PDF

Background: The advancement of hybrid sequencing technologies is increasingly expanding genome assemblies that are often annotated using hybrid sequencing transcriptomics, leading to improved genome characterization and the identification of novel genes and isoforms in a wide variety of organisms.

Results: We developed an easy-to-use genome-guided transcriptome annotation pipeline that uses assembled transcripts from hybrid sequencing data as input and distinguishes between coding and long non-coding RNAs by integration of several bioinformatic approaches, including gene reconciliation with previous annotations in GTF format. We demonstrated the efficiency of this approach by correctly assembling and annotating all exons from the chicken SCO-spondin gene (containing more than 105 exons), including the identification of missing genes in the chicken reference annotations by homology assignments.

View Article and Find Full Text PDF

Skeletal precursors are mesenchymal in origin and can give rise to distinct sublineages. Their lineage commitment is modulated by various signaling pathways. The importance of Wnt signaling in skeletal lineage commitment has been implicated by the study of β-catenin-deficient mouse models.

View Article and Find Full Text PDF

ETP-ALL (Early T cell Progenitor Acute Lymphoblastic Leukemia) represents a high-risk subtype of T cell acute lymphocytic leukemia (T-ALL). Therapeutically, ETP-ALL patients frequently relapse after conventional chemotherapy highlighting the need for alternative therapeutic approaches. Using our ZEB2 ETP-ALL mouse model we previously documented the potential utility of the catalytic LSD1 inhibitor (GSK2879552) for treating mouse/human ETP-ALL.

View Article and Find Full Text PDF

Rearrangements that drive ectopic MEF2C expression have recurrently been found in patients with human early thymocyte progenitor acute lymphoblastic leukemia (ETP-ALL). Here, we show high levels of MEF2C expression in patients with ETP-ALL. Using both in vivo and in vitro models of ETP-ALL, we demonstrate that elevated MEF2C expression blocks NOTCH-induced T cell differentiation while promoting a B-lineage program.

View Article and Find Full Text PDF

The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM).

View Article and Find Full Text PDF

The polarization dependence of magnon-photon scattering in an optical microcavity is reported. Because of the short cavity length, the longitudinal mode-matching conditions found in previously explored, large path-length whispering gallery resonators are absent. Nonetheless, for cross-polarized scattering a strong and broadband suppression of one sideband is observed.

View Article and Find Full Text PDF

Enhancers are -regulatory elements that play critical regulatory roles in modulating developmental transcription programs and driving cell-type-specific and context-dependent gene expression in the brain. The development of massively parallel reporter assays (MPRAs) has enabled high-throughput functional screening of candidate DNA sequences for enhancer activity. Tissue-specific screening of in vivo enhancer function at scale has the potential to greatly expand our understanding of the role of non-coding sequences in development, evolution, and disease.

View Article and Find Full Text PDF

A significant unmet need exists for the delivery of biologic drugs such as polypeptides or nucleic acids to the central nervous system for the treatment and understanding of neurodegenerative diseases. Naturally occurring bacterial toxins have been considered as tools to meet this need. However, due to the complexity of tethering macromolecular drugs to toxins and the inherent dangers of working with large quantities of recombinant toxins, no such route has been successfully exploited.

View Article and Find Full Text PDF

Cardiomyocyte (CM) replacement is very slow in adult mammalian hearts, preventing regeneration of damaged myocardium. By contrast, fetal hearts display considerable regenerative potential owing to the presence of less mature CMs that still have the ability to proliferate. In this study, we demonstrate that heart-specific expression of Oct4, Sox2, Klf4, and c-Myc (OSKM) induces adult CMs to dedifferentiate, conferring regenerative capacity to adult hearts.

View Article and Find Full Text PDF

The ZEB2 transcription factor has been demonstrated to play important roles in hematopoiesis and leukemic transformation. ZEB1 is a close family member of ZEB2 but has remained more enigmatic concerning its roles in hematopoiesis. Here, we show using conditional loss-of-function approaches and bone marrow (BM) reconstitution experiments that ZEB1 plays a cell-autonomous role in hematopoietic lineage differentiation, particularly as a positive regulator of monocyte development in addition to its previously reported important role in T-cell differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer cells need to grow by getting signals to keep multiplying and by avoiding death, and a process called autophagy helps with this by providing nutrients.
  • A protein called TSSC4 can actually help stop cancer cells from growing and dying by blocking autophagy, making it a potential tumor suppressor.
  • In certain cancer cells, if TSSC4 is missing, autophagy can switch from helping the cells survive to making them die instead, highlighting the importance of TSSC4 in fighting cancer.
View Article and Find Full Text PDF

Hematopoietic stem and progenitor cell (HSPC) engraftment after transplantation during anticancer treatment depends on support from the recipient bone marrow (BM) microenvironment. Here, by studying physiological homing of fetal HSPCs, we show the critical requirement of balanced local crosstalk within the skeletal niche for successful HSPC settlement in BM. Transgene-induced overproduction of vascular endothelial growth factor (VEGF) by osteoprogenitor cells elicits stromal and endothelial hyperactivation, profoundly impacting the stromal-vessel interface and vascular architecture.

View Article and Find Full Text PDF