The N-oxygenation of an amine group is one of the steps in the biosynthesis of the antibiotic chloramphenicol. The non-heme di-iron enzyme CmlI was identified as the enzyme catalyzing this reaction through bioinformatics studies and reconstitution of enzymatic activity. In vitro reconstitution was achieved using phenazine methosulfate and NADH as electron mediators, while in vivo activity was demonstrated in using two substrates.
View Article and Find Full Text PDFThe development of alternative architectures for genetic information-encoding systems offers the possibility of new biotechnological tools as well as basic insights into the function of the natural system. In order to examine the potential of benzo-expanded DNA (xDNA) to encode and transfer biochemical information, we carried out a study of the processing of single xDNA pairs by DNA Polymerase I Klenow fragment (Kf, an A-family sterically rigid enzyme) and by the Sulfolobus solfataricus polymerase Dpo4 (a flexible Y-family polymerase). Steady-state kinetics were measured and compared for enzymatic synthesis of the four correct xDNA pairs and twelve mismatched pairs, by incorporation of dNTPs opposite single xDNA bases.
View Article and Find Full Text PDFSpectinabilin is a rare nitrophenyl-substituted polyketide metabolite. Here we report the cloning and heterologous expression of the spectinabilin gene cluster from Streptomyces spectabilis. Unexpectedly, this gene cluster is evolutionarily closer to the aureothin gene cluster than to the spectinabilin gene cluster from Streptomyces orinoci.
View Article and Find Full Text PDFIn a functioning genetic system, the information-encoding molecule must form a regular self-complementary complex (for example, the base-paired double helix of DNA) and it must be able to encode information and pass it on to new generations. Here we study a benzo-widened DNA-like molecule (yDNA) as a candidate for an alternative genetic set, and we explicitly test these two structural and functional requirements. The solution structure of a 10 bp yDNA duplex is measured by using 2D-NMR methods for a simple sequence composed of T-yA/yA-T pairs.
View Article and Find Full Text PDFA widened DNA base-pair architecture is studied in an effort to explore the possibility of whether new genetic system designs might possess some of the functions of natural DNA. In the "yDNA" system, pairs are homologated by addition of a benzene ring, which yields (in the present study) benzopyrimidines that are correctly paired with purines. Here we report initial tests of ability of the benzopyrimidines yT and yC to store and transfer biochemical and biological information in vitro and in bacterial cells.
View Article and Find Full Text PDFNucleic Acids Symp Ser (Oxf)
November 2010
Here we study the viability of an unnatural genetic system with size-expanded geometry (xDNA). xDNA contains base pairs 2.4 A larger than those of natural DNA.
View Article and Find Full Text PDFWe describe the design, synthesis, and properties of DNA-like molecules in which the base pairs are expanded by benzo homologation. The resulting size-expanded genetic helices are called xDNA ("expanded DNA") and yDNA ("wide DNA"). The large component bases are fluorescent, and they display high stacking affinity.
View Article and Find Full Text PDFNucleic Acids Symp Ser (Oxf)
August 2007
Properties and applications of two new classes of DNA base replacements are described. The first class is size-expanded DNA bases; these are benzo-homologous versions of A, C, T, G that yield base pairs 2.4 Angstroms larger than natural pairs.
View Article and Find Full Text PDF