Background: Ulcerative colitis (UC) is a chronic inflammatory bowel disease closely related to gut microbiota dysbiosis and intestinal homeostasis imbalance. Sishen Pill&Tongxieyaofang (SSP-TXYF) has a long history of application in traditional Chinese medicine and is widely used in UC clinics. However, its mechanism of action is still unclear.
View Article and Find Full Text PDFNatural products-coordinated metal ions to form the nanomedicines are in the spotlight for cancer therapy. Some natural products could be coordinated with metal ions forming nanomedicines via simple and green environmental self-assembly, which not only improved the bioavailability of natural products, but also conferred multiple therapeutic modalities and multimodal imaging. On the one hand, in the weak acidity, glutathione (GSH) and hydrogen peroxide (HO) overexpression of tumor microenvironment (TME), such carrier-free nanomedicines could be further enhanced the therapeutic effect via optimizing the species of metal ions.
View Article and Find Full Text PDFColitis-associated colorectal cancer (CAC) is fatal and can develop spontaneously or as a complication of inflammatory bowel diseases. Although co-administration of azoxymethane/dextran sulfate sodium (AOM/DSS) is a classic method for CAC modeling, its limitations need to be addressed. Accordingly, we aimed to optimize the AOM/DSS model to study CAC extensively and further investigate its pathogenic mechanisms relative to microbiota and metabolism.
View Article and Find Full Text PDFPurpose: Many studies have shown that the imbalance of the intestinal flora and metabolite can lead to the development of ulcerative colitis (UC), but their role in recurrent-UC is still unclear. We studied the intestinal flora and metabolites associated with recurrent-UC to elucidate the mechanism and biomarkers of recurrent-UC.
Methods: Ulcerative colitis (UC) models in active, remission, and recurrence stages were established, and the abundance of intestinal flora was determined by 16 S rRNA sequencing.
Our previous study found that the aerial parts of Chinese liquorice ( Fisch.) had pharmacological effects against chronic non-bacterial prostatitis in rats, however the pharmacologically active compounds remain unclear. Here, a method based on UPLC-Q-Exactive Orbitrap-MS was established to qualitatively analyse the flavonoid glycosides rich fraction extracted from the aerial part of Fisch.
View Article and Find Full Text PDF(1) Background: The aerial part of G. uralensis had pharmacological effects against chronic non-bacterial prostatitis (CNP), and flavonoids are the main efficacy components. The purpose of this study was to obtain the pharmacokinetics, prostate distribution and metabolic characteristics of some flavonoids in rats.
View Article and Find Full Text PDFRhizosphere microbiome adapts their structural compositions to water scarcity and have the potential to mitigate drought stress of plants. To unlock this potential, it is crucial to understand community responses to drought in the interplay between soil properties, water management and exogenous microbes interference. Inoculation with dark septate endophytes (DSE) (Acrocalymma vagum, Paraboeremia putaminum) and Trichoderma viride on Astragalus mongholicus grown in the non-sterile soil was exposed to drought.
View Article and Find Full Text PDFIn the present study, anti-chronic nonbacterial prostatitis (CNP) pharmacological experiments using water and ethanol extraction of the aerial parts of were performed to select the best active parts by comparing their efficacy in a CNP model established by injecting carrageenin into the ventral lobe of rat prostate. The anti-CNP activities and expression of serum inflammatory factors in rats were also analyzed. A Protein-Protein Interaction network was constructed, and core targets were screened using topology and analyzed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes.
View Article and Find Full Text PDFNatural colloidal particles (NCPs), which are ubiquitous and abundant in surface waters, may play a crucial role in the sunlight-driven transformation of organic contaminants. This research focused on the effects of NCPs on the photodegradation of two fluoroquinolone antibiotics (FQs), ofloxacin (OFL) and ciprofloxacin (CIP), and assessed the photosensitivity of colloidal organic matter (COM). Results showed that the photodegradation rate constants (k) of OFL and CIP in NCP solutions ranged from 9.
View Article and Find Full Text PDF