A high-sensitivity and compact-size magnetic field sensor based on a multi-longitudinal mode fiber laser is proposed and experimentally demonstrated in this paper. The resonant cavity is composed of two uniform fiber Bragg gratings (FBGs) and a length of Er-doped fiber. A Terfenol-D rod is used as a transducer to stretch the sensing FBG when applying an external magnetic field.
View Article and Find Full Text PDFIn this paper, we present a magnetic target localization method by measurement of total field and its spatial gradients. We deduce an approximate formula of the target's bearing vector expressed by the total field and its gradients. The total field and its gradient can be measured by a scalar magnetometer array and the approximate value of the bearing vector can be calculated.
View Article and Find Full Text PDFStretchable nano-fibers have attracted dramatic attention for the utility in wearable and flexible electronics. In the present case, Ag nanowires (AgNWs)-intertwined thermoplastic polyurethanes (TPU) unwoven nano-membrane is fabricated by an electrospinning method and dip coating technique. Then a strain sensor with a spring-like configuration is fabricated by a twisted method.
View Article and Find Full Text PDFA novel scheme for liquid level detection using an all-fiber Mach-Zehnder interferometer, based on two up-tapers, is proposed and experimentally investigated. The effective refractive indices of the axisymmetric modes LP(0n) are analyzed while it is partly immersed in liquid. The sensitivity of the sensor is greatly dependent on the fiber length between the two up-tapers, as well as the order of the cladding modes through the calculation.
View Article and Find Full Text PDF