Publications by authors named "Haichuan Duan"

Methamphetamine is one of the most abused illicit drugs with roughly 1.2 million users in the United States alone. A large portion of methamphetamine and its metabolites is eliminated by the kidney with renal clearance larger than glomerular filtration clearance.

View Article and Find Full Text PDF

1. Beta-carbolines are indole alkaloids with a wide range of pharmacological and toxicological activities. Beta-carbolines are structurally related to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), a known substrate of organic cation transporters (OCTs).

View Article and Find Full Text PDF

Renal transporter-mediated drug-drug interactions (DDIs) are of significant clinical concern, as they can adversely impact drug disposition, efficacy, and toxicity. Emerging evidence suggests that human renal organic cation transporter 2 (hOCT2) and multidrug and toxin extrusion proteins 1 and 2-K (hMATE1/2-K) exhibit substrate-dependent inhibition, but their impact on renal drug secretion and intracellular accumulation is unknown. Using metformin and atenolol as the probe substrates, we found that the classic inhibitors (e.

View Article and Find Full Text PDF

Plasma membrane monoamine transporter (PMAT) is a newly discovered monoamine transporter belonging to the equilibrative nucleoside transporter family. Highly expressed in the brain, PMAT represents a major uptake transporter that may play a role in monoamine clearance. Although human PMAT has been functionally characterized at the molecular level, rodent models are often used to evaluate PMAT function in ex vivo and in vivo studies.

View Article and Find Full Text PDF

The cholesterol transfer function of steroidogenic acute regulatory protein (StAR) is uniquely integrated into adrenal cells, with mRNA translation and protein kinase A (PKA) phosphorylation occurring at the mitochondrial outer membrane (OMM). The StAR C-terminal cholesterol-binding domain (CBD) initiates mitochondrial intermembrane contacts to rapidly direct cholesterol to Cyp11a1 in the inner membrane (IMM). The conserved StAR N-terminal regulatory domain (NTD) includes a leader sequence targeting the CBD to OMM complexes that initiate cholesterol transfer.

View Article and Find Full Text PDF

Atenolol is a β-blocker widely used in the treatment of hypertension. Atenolol is cleared predominantly by the kidney by both glomerular filtration and active secretion, but the molecular mechanisms involved in its renal secretion are unclear. Using a panel of human embryonic kidney cell lines stably expressing human organic cation transporter (hOCT) 1-3, human organic anion transporter (hOAT) 1, hOAT3, human multidrug and toxin extrusion protein (hMATE) 1, and hMATE2-K, we found that atenolol interacted with both organic cation and anion transporters.

View Article and Find Full Text PDF

Plasma membrane monoamine transporter (PMAT) is a major uptake-2 monoamine transporter that shares extensive substrate and inhibitor overlap with organic cation transporters 1-3 (OCT1-3). Currently, there are no PMAT-specific inhibitors available that can be used in in vitro and in vivo studies to differentiate between PMAT and OCT activities. In this study, we showed that IDT307 (4-(4-(dimethylamino)phenyl)-1-methylpyridinium iodide), a fluorescent analog of 1-methyl-4-phenylpyridinium (MPP+), is a transportable substrate for PMAT and that IDT307-based fluorescence assay can be used to rapidly identify and characterize PMAT inhibitors.

View Article and Find Full Text PDF

Drug-induced taste disturbance is a common adverse drug reaction often triggered by drug secretion into saliva. Very little is known regarding the molecular mechanisms underlying salivary gland transport of xenobiotics, and most drugs are assumed to enter saliva by passive diffusion. In this study, we demonstrate that salivary glands selectively and highly express OCT3 (organic cation transporter-3), a polyspecific drug transporter in the solute carrier 22 family.

View Article and Find Full Text PDF

Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5'-monophosphate to xanthosine 5'-monophosphate (XMP). We developed a highly sensitive liquid chromatography-mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNCs) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients.

View Article and Find Full Text PDF

The choroid plexus (CP) forms the blood-cerebrospinal fluid (CSF) barrier and protects the brain from circulating metabolites, drugs, and toxins. The plasma membrane monoamine transporter (PMAT, SLC29A4) is a new polyspecific organic cation transporter that transports a wide variety of organic cations including biogenic amines, cationic drugs, and neurotoxins. PMAT is known to be expressed in the CP, but its specific role in CP transport of organic cations has not been clearly defined.

View Article and Find Full Text PDF

Plasma membrane monoamine transporter (PMAT) is a new polyspecific transporter that interacts with a wide range of structurally diverse organic cations. To map the physicochemical descriptors of cationic compounds that allow interaction with PMAT, we systematically analyzed the interactions between PMAT and three series of structural analogs of known organic cation substrates including phenylalkylamines, n-tetraalkylammonium (n-TAA) compounds, and β-carbolines. Our results showed that phenylalkylamines with a distance between the aromatic ring and the positively charged amine nitrogen atom of ∼6.

View Article and Find Full Text PDF

The steroidogenic acute regulatory (StAR) protein is generated in rodents from 1.6 kb and 3.5 kb mRNA formed by alternative polyadenylation.

View Article and Find Full Text PDF

The plasma membrane monoamine transporter (PMAT) and organic cation transporter 3 (OCT3) are the two most prominent low-affinity, high-capacity (i.e., uptake(2)) transporters for endogenous biogenic amines.

View Article and Find Full Text PDF

The plasma membrane monoamine transporter (PMAT) belongs to the equilibrative nucleoside transporter family (solute carrier 29) and was alternatively named equilibrative nucleoside transporter 4. Previous studies from our laboratory characterized PMAT as a polyspecific organic cation transporter that minimally interacts with nucleosides. Recently, PMAT-mediated uptake of adenosine (a purine nucleoside) was reported, and the transporter was proposed to function as a dual nucleoside/organic cation transporter.

View Article and Find Full Text PDF

Star is expressed in steroidogenic cells as 3.5- and 1.6-kb transcripts that differ only in their 3'-untranslated regions (3'-UTR).

View Article and Find Full Text PDF

cAMP stimulation of rodent steroidogenic cells produces two StAR transcripts, a major 3.5 kb and a minor 1.6 kb mRNA, differing only in their 3' untranslated regions (3' UTR).

View Article and Find Full Text PDF

The steroidogenic acute regulator (StAR) gene is transcribed to 1.6 kb and 3.5 kb mRNAs that differ only through the length of the 3'-untranslated region (3'-UTR).

View Article and Find Full Text PDF