Publications by authors named "Haibo Ma"

Background: It is well known that abnormal dietary behavior increases the risk for cardiovascular disease especially if the person is depressed and/or anxious. The purpose of this study was to construct a moderated mediation model to explore the roles of abnormal dietary behavior and family health in the mechanism through which depression/anxiety influences Quality of life (QoL) in patients with cardiovascular disease.

Methods: A field survey was conducted in China and ultimately included 730 patients with cardiovascular disease aged 20-60 years.

View Article and Find Full Text PDF

The integration of paper-based microfluidics with deep learning represents a pivotal trend in enhancing diagnostic capabilities. This paper introduces a new approach to improve the performance of a paper-based microfluidic enzyme-linked immunosorbent assay (ELISA) by training the temporal sequence colorimetric data rather than static data conventionally, using deep learning. Traditional deep learning-assisted ELISA analysis methods usually rely on a single snapshot of the reaction at its end, which limits the further improvement of sensitivity and specificity (or accuracy for combined evaluation), as it misses dynamic changes in the reaction over time.

View Article and Find Full Text PDF

Book localization is crucial for the development of intelligent book inventory systems, where the high-precision detection of book spines is a critical requirement. However, the varying tilt angles and diverse aspect ratios of books on library shelves often reduce the effectiveness of conventional object detection algorithms. To address these challenges, this study proposes an enhanced oriented R-CNN algorithm for book spine detection.

View Article and Find Full Text PDF

The incorporation of polymeric insulators has led to notable achievements in the field of organic semiconductors. By altering the blending concentration, polymeric insulators exhibit extensive capabilities in regulating molecular configuration, film crystallinity, and mitigation of defect states. However, current research suggests that the improvement in such physical properties is primarily attributed to the enhancement of thin film morphology, an outcome that seems to be an inevitable consequence of incorporating insulators.

View Article and Find Full Text PDF

The strength of the density matrix renormalization group (DMRG) in handling strongly correlated systems lies in its unbiased and simultaneous treatment of identical sites that are both energetically degenerate and spatially similar, as typically encountered in physical models. However, this very feature becomes a drawback when DMRG is applied to quantum chemistry calculations for large, realistic correlated systems. This is because entangled orbitals often span broad ranges in both energy and space, with their interactions being notably inhomogeneous.

View Article and Find Full Text PDF
Article Synopsis
  • - The study developed a global emission inventory of organophosphate flame retardants (OPFRs) from 2010 to 2020, revealing a 3.31% average annual increase in emissions, totaling over 21,300 tons.
  • - The main source of OPFR emissions comes from production processes (55.43%), with significant contributions from Asia, North America, and Europe.
  • - The inventory was validated using a global atmospheric transport model, showing reliable predictions for most regions except the polar areas, highlighting the need for better understanding of chemical reactions affecting OPFR dispersion.
View Article and Find Full Text PDF
Article Synopsis
  • The study examines the effectiveness and safety of neoadjuvant immunochemotherapy (NAIC) using toripalimab compared to traditional neoadjuvant chemotherapy (NAC) in treating locally advanced esophageal squamous cell carcinoma (ESCC).
  • Conducted as a phase III clinical trial in China, 252 patients were randomly assigned to receive either NAIC (toripalimab + chemotherapy) or NAC alone, with primary focus on event-free survival and secondary outcomes like overall survival and pathological response.
  • Results showed a significant improvement in event-free survival (77.9% vs. 64.3%) and overall survival (94.1% vs. 83.0%) for the toripalimab group
View Article and Find Full Text PDF

Quantum dynamics simulation and computational spectroscopy serve as indispensable tools for the theoretical understanding of various fundamental physical and chemical processes, ranging from charge transfer to photochemical reactions. When simulating realistic systems, the primary challenge stems from the overwhelming number of degrees of freedom and the pronounced many-body correlations. Here, we present Kylin-V, an innovative quantum dynamics package designed for accurate and efficient simulations of dynamics and spectroscopic properties of vibronic Hamiltonians for molecular systems and their aggregates.

View Article and Find Full Text PDF

Driven by the essential need of a green, safe, and low-cost approach to producing HO, a highly valuable multifunctional chemical, artificial photosynthesis emerges as a promising avenue. However, current catalyst systems remain challenging, due to the need of high-density sunlight, poor selectivity and activity, or/and unfavorable thermodynamics. Here, we reported that an indirect 2e water oxidation reaction (WOR) in photocatalytic HO production was unusually activated by CN with piezoelectric effects.

View Article and Find Full Text PDF

Mediastinal infection caused by anastomotic leak is hard to cure, mainly because the poor drainage at the site of mediastinal infection leads to persistent cavity infection, which in turn becomes a refractory mediastinal abscess cavity after minimally invasive esophagectomy (MIE)-McKeown. Herein, we explored sternocleidomastoid (SCM) muscle flaps and emulsified adipose tissue stromal vascular fraction containing adipose-derived stem-cells to address this issue. We studied 10 patients with esophageal cancer who underwent MIE-McKeown + 2-field lymphadenectomy and developed anastomotic and mediastinal leak and received new technology treatment in the Affiliated Cancer Hospital of Zhengzhou University from June 2018 to March 2022.

View Article and Find Full Text PDF

Graphite is the popular anode material of current lithium-ion batteries (LIBs). However, its low specific capacity and poor lithium intercalation potential hinder its use for high-power and large-scale energy storage. To meet the demand for energy storage, novel anode materials with high capacity, fast chargeable capability, and long cycle life are of great interest.

View Article and Find Full Text PDF

An exciton-phonon (ex-ph) model based on our recently developed block interaction product basis framework is introduced to simulate the distal charge separation (CS) process in aggregated perylenediimide (PDI) trimer incorporating the quantum dynamic method, i.e., the time-dependent density matrix renormalization group.

View Article and Find Full Text PDF

Singlet fission (SF) is a process where a singlet state splits into two triplet states, which is essential for enhancing optoelectronic devices. Macrocyclic structures allow for precise control of chromophore orientation and facilitate singlet fission in solutions. However, the behavior of these structures in thin films, crucial for solid-state device optimization, remains underexplored.

View Article and Find Full Text PDF

Background: Studies of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in resectable non-small-cell lung cancer (NSCLC) have been conducted. The purpose of our study was to evaluate the benefits of osimertinib as neoadjuvant therapy for resectable EGFR-mutated NSCLC.

Method: This retrospective study evaluated patients with EGFR mutations in exon 19 or 21 who received targeted therapy with osimertinib (80 mg per day) before surgery between January 2019 and October 2023 in Henan Cancer Hospital.

View Article and Find Full Text PDF

The implementation of multireference configuration interaction (MRCI) methods in quantum systems with large active spaces is hindered by the expansion of configuration bases or the intricate handling of reduced density matrices (RDMs). In this work, we present a spin-adapted renormalized-residue-based MRCI (RR-MRCI) approach that leverages renormalized residues to effectively capture the entanglement between active and inactive orbitals. This approach is reinforced by a novel efficient algorithm, which also facilitates an efficient deployment of spin-adapted matrix product state MRCI (MPS-MRCI).

View Article and Find Full Text PDF

As one kind of approximation of the full configuration interaction solution, the selected configuration interaction (sCI) methods have been shown to be valuable for large active spaces. However, the inclusion of dynamic correlation beyond large active spaces is necessary for more quantitative results. Since the sCI wave function can provide a compact reference for multireference methods, previously, we proposed an externally contracted multireference configuration interaction method using the sCI reference reconstructed from the density matrix renormalization group wave function [ 4747-4755].

View Article and Find Full Text PDF

Organophosphate flame retardants (OPFRs) pose a new challenge to the marine environment due to their toxicity and persistence. This study explores the contributions of OPFR emissions from different land sources and sectors to its contamination of the East China Sea (ECS) using a novel atmospheric transport model(ChnMETOP)for POPs and a marine food web model. The results show that the major land sources causing OPFR pollution in the ECS were situated in Yangtze River Delta (YRD) and middle reach areas of China's Yangtze River, confirming that source proximity made most significant contributions to OPFR pollution in the ECS.

View Article and Find Full Text PDF

Background: The trajectories of cognitive function in the oldest old individuals is unclear, and the relationship between resting heart rate (RHR) and cognitive decline is controversial.

Methods: 3300 participants who had cognitive function repeatedly measured 4 ~ 8 times were included, and latent class growth mixed models were used to identified the cognitive function trajectories. Cognitive decline was defined by the trajectory shapes, considering level and slope.

View Article and Find Full Text PDF

Introducing the two-dimensional (2D) hexagonal boron nitride (hBN) between 2D transition metal dichalcogenide (TMD) layers promises convenient manipulation of the interlayer exciton (IX) and interlayer charge transfer in TMD/hBN/TMD heterostructures, while the role of inserted hBN layers during IX formation is controversial. Employing ab initio nonadiabatic molecular dynamics (NAMD) simulations and the electron-phonon coupling model, we systematically investigate interlayer hole transfer in MoSe2/WSe2 bilayers intercalated by hBN layers with various thicknesses. The conventional direct hole transfer from MoSe to WSe is decelerated by 2-3 orders of magnitude after the hBN insertion.

View Article and Find Full Text PDF

Due to the dynamic nature of ester linkages, ester-bond-containing materials are well known for their outstanding degradability and stimuli responsiveness. However, whether ester hydrolysis is affected by mechanical forces remains unclear. Here, we develop a single-molecule assay to quantitatively study the force-dependent ester hydrolysis using an engineered circular permutant protein with a caged ester bond as a model.

View Article and Find Full Text PDF

Decabromodiphenyl ether (Deca-BDE) was officially listed in Annex A of the Stockholm Convention for persistent organic pollutants (POPs). It is necessary to establish its emission inventory to help reduce Deca-BDE contamination in the environment. We established a comprehensive Deca-BDE emission inventory in China.

View Article and Find Full Text PDF

Thanks to the high compression of the matrix product state (MPS) form of the wave function and the efficient site-by-site iterative sweeping optimization algorithm, the density matrix normalization group (DMRG) and its time-dependent variant (TD-DMRG) have been established as powerful computational tools in accurately simulating the electronic structure and quantum dynamics of strongly correlated molecules with a large number (10) of quantum degrees of freedom (active orbitals or vibrational modes). However, the quantitative characterization of the quantum many-body behaviors of realistic strongly correlated systems requires a further consideration of the interaction between the embedded active subsystem and the remaining correlated environment, e.g.

View Article and Find Full Text PDF

The accurate evaluation of electron correlations is highly necessary for the proper descriptions of the electronic structures in strongly correlated molecules, ranging from bond-dissociating molecules, polyradicals, to large conjugated molecules and transition metal complexes. For this purpose, in this paper, a new ab-initio quantum chemistry program Kylin 1.0 for electron correlation calculations at various quantum many-body levels, including configuration interaction (CI), perturbation theory (PT), and density matrix renormalization group (DMRG), is presented.

View Article and Find Full Text PDF

Quantum dynamics (QD) simulation is a powerful tool for interpreting ultrafast spectroscopy experiments and unraveling their microscopic mechanism in out-of-equilibrium excited state behaviors in various chemical, biological, and material systems. Although state-of-the-art numerical QD approaches such as the time-dependent density matrix renormalization group (TD-DMRG) already greatly extended the solvable system size of general linearly coupled exciton-phonon models with up to a few hundred phonon modes, the accurate simulation of larger system sizes or strong system-environment interactions is still computationally highly challenging. Based on quantum information theory (QIT), in this work, we realize that only a small number of effective phonon modes couple to the excitonic system directly regardless of a large or even infinite number of modes in the condensed phase environment.

View Article and Find Full Text PDF

Atmospheric emission sources of persistent organic pollutants (POPs) in China's eastern seaboard regions cause heavy POP contamination in the Bohai Sea (BS), China. Because many rivers are emptying into the BS, terrestrial runoff has been considered a dominant pathway of POPs onto the BS. Here, we explored the contribution of atmospheric transport and terrestrial runoff to organophosphorus flame retardants (OPFRs) to the BS by using an atmospheric transport model and a terrestrial runoff model.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6i29cbjnc5s6uscl9chpg5sff0qkoejg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once