Hydraulic retention time (HRT), as an important parameter in the wastewater treatment process, has a great impact on water quality and energy consumption. With the rapid advances in computer technology and deepened understanding of in microbial metabolism, a series of activated sludge models (ASMs) have been developed and applied in wastewater treatment. However, ASMs simulation based on the nexus of HRT, water treatment process, water quality and energy consumption has yet to be verified.
View Article and Find Full Text PDFEnviron Sci Technol
October 2022
Iron sulfide nanoparticles (nano-FeS) have shown great potential for in situ remediation of Cr(VI) pollution by reducing Cr(VI) to the less soluble and toxic Cr(III). However, material oxidation that inevitably occurs during storage and application alters its reactivity. Herein, we show that partial oxidation of nanoparticulate mackinawite (FeS) significantly enhances its capability in sequestering Cr(VI).
View Article and Find Full Text PDFVertical and lateral heterostructures consisting of atomically layered two-dimensional (2D) materials exhibit intriguing properties, such as efficient charge/energy transfer, high photoresponsivity, and enhanced photocatalytic activities. However, the controlled fabrication of vertical or lateral heterojunctions on metal substrates remains challenging. Herein, we report a facile and controllable method for selective growth of WS/MoS vertical or lateral heterojunctions on polycrystalline gold (Au) foil by tuning the gas flow rate of hydrogen (H).
View Article and Find Full Text PDFIndium selenide (InSe) has become a research hotspot because of its favorable carrier mobility and thickness-tunable band gap, showing great application potential in high-performance optoelectronic devices. The trend of miniaturization in optoelectronics has forced the feature sizes of the electronic components to shrink accordingly. Therefore, atomically thin InSe crystals may play an important role in future optoelectronics.
View Article and Find Full Text PDFIn this study, hydroxyethyl cellulose (HEC) and polyvinyl alcohol (PVA) as the framework, borax as the cross-linker, and biomass lignin from pulping black liquors and biorefinery as the plasticizer were used to synthesize the lignin-based HEC-PVA (LCP) self-healing conductive hydrogel with highly stretchable and thermosensitive properties by the one-step fabrication method. Compared with the PVA hydrogel, the maximum storage modulus and the elongation rate was increased by 7 times and 20 times, respectively. Uniformly distributed lignin could increase the mobility and distance of polymer molecular chains, therefore improve the viscoelasticity and stretchability of the LCP self-healing hydrogel.
View Article and Find Full Text PDFTopological Kondo insulators (TKIs) are a new class of topological materials in which topological surface states dominate the transport properties at low temperatures. They are also an ideal platform for studying the interplay between strong electron correlations and topological order. Here, hysteretic magnetoresistance (MR) is observed in TKI SmB thin nanowires at temperatures up to 8 K, revealing the strong magnetism at the surface of SmB.
View Article and Find Full Text PDFIn this study, we proposed a theoretical model for one-dimensional semiconductor nanowires (NWs), taking account of the defect-related electrical transport process. The maximum emission current density was calculated by considering the influence of Joule heating, using a one-dimensional heat equation. The field emission properties of individual CuO NWs with different electrical properties were studied using an in situ experimental technique.
View Article and Find Full Text PDFThere are more or less dopants or defects existing in nanomaterials, so they usually have different conduct-types even for the same substrate. Therefore, fast identification of the conduction-type of nanomaterials is very essential for their practical application in functional nanodevices. Here we use the field emission (FE) technique to research nanomaterials and establish a generalized Schottky-Nordheim (SN) model, in which an important parameter λ (the image potential factor) is first introduced to describe the effective image potential.
View Article and Find Full Text PDFAs one of the most important two-dimensional (2D) materials, BN nanosheets attracted intensive interest in the past decade. Although there are many methods suitable for the preparation of BN sheets, finding a cheap and nontoxic way for their mass and high-quality production is still a challenge. Here we provide a highly effective and cheap way to synthesize gram-scale-level well-structured BN nanosheets from many common graphite products as source materials.
View Article and Find Full Text PDFBoron nanowires (BNWs) may have potential applications as reinforcing materials because B fibers are widely known for their excellent mechanical performance. However until now, there have been only few reports on the mechanical properties of individual BNW, and in situ transmission electron microscopy (TEM) investigations shining a light on their fracture mechanism have not been performed. In this paper, we applied in situ high-resolution TEM (HRTEM) technique to study the mechanical properties of individual BNWs using three loading schemes.
View Article and Find Full Text PDFBoron nanowires (BNWs) are considered as an ideal optoelectronic nanomaterial, but controlling them in identical growth mode and large-area patterns is technically challenging. Here, large-scale BNW patterns with a uniform base-up growth mode are successfully fabricated by choosing Ni film as the catalyst. Moreover, they exhibit low turn-on field (4.
View Article and Find Full Text PDFUltra-long AlN nanowire arrays are prepared by chemical vapor deposition, and the photoconductive performances of individual nanowires are investigated in our self-built measurement system. Individual ultra-long AlN nanowire (UAN) exhibits a clear photoconductive effect under different excited lights. We attribute the positive photocurrent response of individual UAN to the dominant molecular sensitization effect.
View Article and Find Full Text PDF