Ongoing efforts to improve sheep reference genome assemblies still leave many gaps and incomplete regions, resulting in a few common failures and errors in genomic studies. Here, we report a 2.85-Gb gap-free telomere-to-telomere genome of a ram (T2T-sheep1.
View Article and Find Full Text PDFPanda polarization-maintaining few-mode optical fiber (PPMFMOF) has important research significance in the short distance optical transmission field owing to its advantages of weak nonlinear effects, which is benefit to reduce the use of digital signal processing equipment. Designing a high-performance PPMFMOF quickly and efficiently is expected and yet challenging. In this article, we demonstrated a forward design method for the design of PPMFMOF based on artificial neural network (ANN) to solve the problems of inefficient and time-consuming PPMFMOF design in traditional design method.
View Article and Find Full Text PDFA complete goat (Capra hircus) reference genome enhances analyses of genetic variation, thus providing insights into domestication and selection in goats and related species. Here, we assemble a telomere-to-telomere (T2T) gap-free genome (2.86 Gb) from a cashmere goat (T2T-goat1.
View Article and Find Full Text PDFA novel highly sensitive D-shaped photonic crystal fiber-based surface plasmon resonance (PCF-SPR) sensor for dual parameters of refractive index and temperature detecting is proposed. A PCF cladding polishing provides a D-shape design with a gold (Au) film coating for refractive index (RI) sensing (Core 1) and a composite film of silver (Ag) and polydimethylsiloxane (PDMS) for temperature sensing (Core 2). Comsol Multiphysics 5.
View Article and Find Full Text PDFPharmaceuticals and personal care products (PPCPs) are insufficiently degraded in saline wastewater treatment processes and are found at high concentrations and detection frequencies in aquatic environments. In this study, the wetland plant Thalia dealbata was selected using a screening plant experiment to ensure good salt tolerance and high efficiency in removing PPCPs. An electric integrated vertical-flow constructed wetland (E-VFCW) was developed to improve the removal of PPCPs and reduce the abundance of antibiotic resistance genes (ARGs).
View Article and Find Full Text PDFBiological methods do not effectively remove pharmaceutical products (PPs) and antibiotic resistance genes (ARGs) from wastewater at low temperatures, leading to environmental pollution. Therefore, anaerobic-aerobic-coupled upflow bioelectrochemical reactors (AO-UBERs) were designed to improve the removal of PPs at low temperatures (10 ± 2 °C). The result shows that diclofenac (DIC) and ibuprofen (IBU) removals in the system with aerobic anodic and anaerobic cathodic chambers were 91.
View Article and Find Full Text PDFIn this paper, high-order LP modes based Sagnac interference for temperature sensing are proposed and investigated theoretically. Based on the specific high-order LP modes excited through the mode selective couplers (MSCs), we design a stress-induced Panda-type few-mode fiber (FMF) supporting 4 LP modes and construct a Sagnac interferometer to achieve a highly sensitive temperature sensor. The performances of different LP modes (LP, LP, LP, and LP) are explored under a single Sagnac interferometer and paralleled Sagnac interferometers, respectively.
View Article and Find Full Text PDFRecent Pat Anticancer Drug Discov
May 2024
Graphene quantum dots (GQDs) have attracted significant attention in biomedicine, while extensive investigations have revealed a reverse regarding the potential biotoxicity of GQDs. In order to supplementing the understanding of the toxicity profile of GQDs, this study employs a molecular dynamics (MD) simulation approach to systematically investigate the potential toxicity of both GQDs and Graphene Oxide Quantum Dots (GOQDs) on the Anterior Gradient Homolog 2 (AGR2) protein, a key protein capable of protecting the intestine. We construct two typical simulation systems, in which an AGR2 protein is encircled by either GQDs or GOQDs.
View Article and Find Full Text PDFOil spills lead to a substantial depletion of aquatic biodiversity. The mitigation of an oil spill can entail considerable financial outlays, give rise to consequential environmental impacts, and present formidable operational complexities. In this research, hollow hydroxyapatite particles with enhanced oil adsorption characteristics were prepared by surface modification with stearic acid.
View Article and Find Full Text PDFIn this paper, a dual-core photonic crystal fiber (DC-PCF) sensitivity sensor filled with magnetic liquid is introduced and investigated with the finite element method (FEM). To regulate the energy coupling involving the two cores, the magnetic fluid is filled into the pore between the two cores. To adjust the coupling between the supermodes in the DC-PCF, the refractive index (RI) of the air hole filled magnetic fluid may change due to the external magnetic field.
View Article and Find Full Text PDFThe resistance of cancer cells to anticancer drugs has been recognized as one of the main reasons for chemotherapy failure. Multidrug combination therapy is one of the most effective ways to solve this problem. Therefore, in this article, we designed and synthesized a pH/GSH dual-responsive camptothecin/doxorubicin (CPT/DOX) dual pro-drug synergistic treatment system with the aim of overcoming the resistance of non-small cell lung cancer A549/ADR cells to DOX.
View Article and Find Full Text PDFOsteoporosis is a serious threat to human life. Guben Zenggu Granule is an empirical prescription for clinical treatment of osteoporosis. MC3T3-E1 cells are mouse osteogenic precursor cells with osteogenic differentiation, and are classic cells for studying bone metabolism and osteogenic mechanism, as well as mechanical stimulation sensitive cells.
View Article and Find Full Text PDFInnovation (Camb)
September 2022
Strategy evaluation and optimization in response to troubling urban issues has become a challenging issue due to increasing social uncertainty, unreliable predictions, and poor decision-making. To address this problem, we propose a universal computational experiment framework with a fine-grained artificial society that is integrated with data-based models. The purpose of the framework is to evaluate the consequences of various combinations of strategies geared towards reaching a Pareto optimum with regards to efficacy versus costs.
View Article and Find Full Text PDFJ Phys Condens Matter
June 2022
The calcium hydrides and lanthanum hydrides under high pressures have been reported to have good superconducting properties with high-. In this work, the structures and superconductivities of Ca-La-H ternary hydrides have been studied by genetic algorithm and density functional theory calculations. Our results show that at the pressure range of 100-300 GPa, the most stable structure of CaLaHhas asymmetry, in which there is a Hhydrogen cage.
View Article and Find Full Text PDFCancer treatment is imminent, and controlled drug carriers are an important development direction for future clinical chemotherapy. Visual guidance is a feasible means to achieve precise treatment, reduce toxicity and increase drug efficacy. However, the existing visual control methods are limited by imaging time-consuming, sensitivity and side effects.
View Article and Find Full Text PDFNanochemotherapy is recognized as one of the most promising cancer treatment options, and the design of the carrier has a crucial impact on the final efficacy. To precisely improve the efficacy and reduce the toxicity, we combined the clinical contrast agent (Gd-DTPA) with a stimulus-sensitive nitrobenzyl ester and then prepared a series of nNBGD lipids by varying the carbon chain length of the hydrophobic group. The self-assembled nNBGD liposomes can be tracked by MRI to localize the aggregation of drug carriers , so as to prompt the application of light stimulation at the optimal time to facilitate the precise release of carriers at the lesion site.
View Article and Find Full Text PDFControlled-release drug carriers in cancer therapy are the most ideal way to reduce toxicity and improve drug efficacy. Since light stimulation is precise and operable, most multi-stimulation response carriers utilize phototherapy to enhance release efficiency. However, phototoxicity severely limits the application of phototherapy.
View Article and Find Full Text PDFThe emergence of nano-targeted controlled release liposomal drug carriers has provided a breakthrough in cancer therapy. However, their clinical efficacy is unsatisfactory, which is related to individualized differences in targeted drugs and poor release efficiency. In this paper, we prepared a class of personalized targeted and precisely controlled-release therapeutic drug carriers (GF liposomes) by co-assembling targeting and traceable nitrobenzyl ester lipids to propose a magnetic resonance imaging (MRI)-guided personalized targeted drug screening strategy and a multi-stimulus superimposed controlled-release strategy.
View Article and Find Full Text PDFThe negative consequences, such as healthy and environmental issues, brought by rapid urbanization and interactive human activities result in increasing social uncertainties, unreliable predictions, and poor management decisions. For instance, the Coronavirus Disease (COVID-19) occurred in 2019 has been plaguing many countries. Aiming at controlling the spread of COVID-19, countries around the world have adopted various mitigation and suppression strategies.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2021
The targeting dual-responsive drug delivery system was employed for cancer treatment as a positive strategy. Herein, Lactobionic acid (LA)-modified and non-modified UV/reduction dual-responsive molecules (10,10-NB-S-S-P-LA and 10,10-NB-S-S-P-OMe) were synthesized. Functional magnetic resonance imaging (MRI) contrast agent (12,12-NB-DTPA-Gd) was mixed with 10,10-NB-S-S-P-LA or 10,10-NB-S-S-P-OMe in the optimal ratio (3:1) to develop targeted empty liposomes (GNSPL) or non-targeted empty liposomes (GNSPM) with superior UV/reduction dual-responsiveness, biocompatibility and magnetic resonance imaging (MRI) performance.
View Article and Find Full Text PDFReactive oxygen species (ROS) are not only used as a therapeutic reagent in chemodynamic therapy (CDT), to stimulate the release of antineoplastic drugs, they can also be used to achieve a combined effect of CDT and chemotherapy to enhance anticancer effects. Herein, we synthesized a pH-responsive prodrug (PEG2k-NH-N-DOX), ROS-responsive prodrug (PEG2k-S-S-CPT-ROS), organic CDT agents (TPP-PEG2k-LND, TPP-PEG2k-TOS), and T1-enhanced magnetic resonance imaging contrast agents (Gd-DTPA-N16-16), and used them to encapsulate combrestatinA4 (CA4) to prepare traceable pH/ROS dual-responsive multifunctional nanoparticles (TLDCAG NPs) with endogenous ROS burst and spatiotemporally controlled multiple drug release ability. Firstly, TLDCAG NPs were accumulated in the tumor cell microenvironment via an enhanced permeability and retention (EPR) effect.
View Article and Find Full Text PDFConstructing highly efficient and multifunctional nanoparticles to overcome the multiple challenges of targeted drug delivery is a new strategy urgently needed in tumor therapy. Here, we synthesized pH-responsive prodrug (PEG-NH-N-DOX), GSH-responsive prodrug (PEG-S-S-CPT), folate-receptor targeting polymers (FA-PEG-L8, FA-PEG-TOS) and T1-enhanced magnetic resonance imaging contrast agents (Gd-DTPA-N16-16), used to encapsulate combrestatinA4 (CA4) to prepare multifunctional nanoparticles (FTDCAG NPs). Unlike other nanoparticles, FTDCAG NPs contains three drugs with the ability to control the release in time and space, which can maximize the effectiveness of precise cancer chemotherapy.
View Article and Find Full Text PDF