Publications by authors named "HaiKuan Feng"

The Leaf Area Index (LAI) is a crucial parameter for evaluating crop growth and informing fertilization management in agricultural fields. Compared to traditional methods, UAV-based hyperspectral imaging technology offers significant advantages for non-destructive, rapid monitoring of crop LAI by simultaneously capturing both spectral information and two-dimensional images of the crop canopy, which reflect changes in its structure. While numerous studies have demonstrated that various texture features, such as the Gray-Level Co-occurrence Matrix (GLCM), can be used independently or in combination with crop canopy spectral data for LAI estimation, limited research exists on the application of Haralick textures for evaluating crop LAI across multiple growth stages.

View Article and Find Full Text PDF

Plant potassium content (PKC) is a crucial indicator of crop potassium nutrient status and is vital in making informed fertilization decisions in the field. This study aims to enhance the accuracy of PKC estimation during key potato growth stages by using vegetation indices (VIs) and spatial structure features derived from UAV-based multispectral sensors. Specifically, the fraction of vegetation coverage (FVC), gray-level co-occurrence matrix texture, and multispectral VIs were extracted from multispectral images acquired at the potato tuber formation, tuber growth, and starch accumulation stages.

View Article and Find Full Text PDF

Plant nitrogen content (PNC) is an important indicator to characterize the nitrogen nutrition status of crops, and quickly and efficiently obtaining the PNC information aids in fertilization management and decision-making in modern precision agriculture. This study aimed to explore the potential to improve the accuracy of estimating PNC during critical growth periods of potato by combining the visible light vegetation indices (VIs) and morphological parameters (MPs) obtained from an inexpensive UAV digital camera. First, the visible light VIs and three types of MPs, including the plant height (), canopy coverage (CC) and canopy volume (CV), were extracted from digital images of the potato tuber formation stage (S1), tuber growth stage (S2), and starch accumulation stage (S3).

View Article and Find Full Text PDF

Obtaining crop above-ground biomass (AGB) information quickly and accurately is beneficial to farmland production management and the optimization of planting patterns. Many studies have confirmed that, due to canopy spectral saturation, AGB is underestimated in the multi-growth period of crops when using only optical vegetation indices. To solve this problem, this study obtains textures and crop height directly from ultrahigh-ground-resolution (GDS) red-green-blue (RGB) images to estimate the potato AGB in three key growth periods.

View Article and Find Full Text PDF

A better understanding of wheat nitrogen status is important for improving N fertilizer management in precision farming. In this study, four different sensors were evaluated for their ability to estimate winter wheat nitrogen. A Gaussian process regression (GPR) method with the sequential backward feature removal (SBBR) routine was used to identify the best combinations of vegetation indices (VIs) sensitive to wheat N indicators for different sensors.

View Article and Find Full Text PDF

Background: Fractional vegetation cover (FVC) is an important parameter for evaluating crop-growth status. Optical remote-sensing techniques combined with the pixel dichotomy model (PDM) are widely used to estimate cropland FVC with medium to high spatial resolution on the ground. However, PDM-based FVC estimation is limited by effects stemming from the variation of crop canopy chlorophyll content (CCC).

View Article and Find Full Text PDF

The accuracy of nitrogen (N) diagnosis is essential to improve N use efficiency. The standard critical N concentration (standard N) dilution curves, an expression of the dynamics of N uptake and dry matter accumulation in plants, are widely used to diagnose the N status of crops. Several standard N dilution curves were proposed and validated for several crops, based on experiments involving different N fertilizer treatments.

View Article and Find Full Text PDF

Background: Timely and accurate estimates of canopy chlorophyll (Chl) a and b content are crucial for crop growth monitoring and agricultural management. Crop canopy reflectance depends on many factors, which can be divided into the following categories: (i) leaf effects (e.g.

View Article and Find Full Text PDF

Above-ground biomass (AGB) and the leaf area index (LAI) are important indicators for the assessment of crop growth, and are therefore important for agricultural management. Although improvements have been made in the monitoring of crop growth parameters using ground- and satellite-based sensors, the application of these technologies is limited by imaging difficulties, complex data processing, and low spatial resolution. Therefore, this study evaluated the use of hyperspectral indices, red-edge parameters, and their combination to estimate and map the distributions of AGB and LAI for various growth stages of winter wheat.

View Article and Find Full Text PDF

Crop yield is related to national food security and economic performance, and it is therefore important to estimate this parameter quickly and accurately. In this work, we estimate the yield of winter wheat using the spectral indices (SIs), ground-measured plant height (H), and the plant height extracted from UAV-based hyperspectral images (H) using three regression techniques, namely partial least squares regression (PLSR), an artificial neural network (ANN), and Random Forest (RF). The SIs, H, and H were used as input values, and then the PLSR, ANN, and RF were trained using regression techniques.

View Article and Find Full Text PDF

Above-ground biomass (AGB) is an important indicator for effectively assessing crop growth and yield and, in addition, is an important ecological indicator for assessing the efficiency with which crops use light and store carbon in ecosystems. However, most existing methods using optical remote sensing to estimate AGB cannot observe structures below the maize canopy, which may lead to poor estimation accuracy. This paper proposes to use the stem-leaf separation strategy integrated with unmanned aerial vehicle LiDAR and multispectral image data to estimate the AGB in maize.

View Article and Find Full Text PDF

The application of high-throughput phenotyping (HTP) techniques based on unmanned aerial vehicle (UAV) remote-sensing platforms to study large-scale population breeding opens the way to more efficient acquisition of dynamic phenotypic traits and provides new tools that should help close the gap between genotyping and traditional field-phenotyping methods. Toward this end we used a field UAV-HTP platform to deploy a RGB high-resolution camera to acquire time-series images. By using three-dimensional reconstructed point cloud models, we developed a repeatable processing workflow to extract plant height from time-series images.

View Article and Find Full Text PDF

Accurate and dynamic monitoring of crop nitrogen status is the basis of scientific decisions regarding fertilization. In this study, we compared and analyzed three types of spectral variables: Sensitive spectral bands, the position of spectral features, and typical hyperspectral vegetation indices. First, the Savitzky-Golay technique was used to smooth the original spectrum, following which three types of spectral parameters describing crop spectral characteristics were extracted.

View Article and Find Full Text PDF

Background: Above-ground biomass (AGB) is a basic agronomic parameter for field investigation and is frequently used to indicate crop growth status, the effects of agricultural management practices, and the ability to sequester carbon above and below ground. The conventional way to obtain AGB is to use destructive sampling methods that require manual harvesting of crops, weighing, and recording, which makes large-area, long-term measurements challenging and time consuming. However, with the diversity of platforms and sensors and the improvements in spatial and spectral resolution, remote sensing is now regarded as the best technical means for monitoring and estimating AGB over large areas.

View Article and Find Full Text PDF

Ratio of carbon to nitrogen concentration (C/N) that can illuminate metabolic status of C and N in crop leaves is one valuable indicator for crop nutrient diagnosis. This study explored the feasibility of using spectral slope features from hyperspectral measurements with Branch-and-Bound (BB) algorithm to monitor leaf C/N in wheat and barley. Experimental data from barley in 2010 and wheat in 2012 were collected and used.

View Article and Find Full Text PDF

Phenotyping plays an important role in crop science research; the accurate and rapid acquisition of phenotypic information of plants or cells in different environments is helpful for exploring the inheritance and expression patterns of the genome to determine the association of genomic and phenotypic information to increase the crop yield. Traditional methods for acquiring crop traits, such as plant height, leaf color, leaf area index (LAI), chlorophyll content, biomass and yield, rely on manual sampling, which is time-consuming and laborious. Unmanned aerial vehicle remote sensing platforms (UAV-RSPs) equipped with different sensors have recently become an important approach for fast and non-destructive high throughput phenotyping and have the advantage of flexible and convenient operation, on-demand access to data and high spatial resolution.

View Article and Find Full Text PDF
Article Synopsis
  • - Freeze injury significantly affects winter wheat growth by impacting chlorophyll content, which is a key indicator of plant health.
  • - The study utilized hyperspectral reflectance analysis and continuous wavelet transform to establish a correlation between chlorophyll levels and freeze stress severity, leading to the development of a linear regression model for prediction.
  • - Results showed that chlorophyll content could be effectively estimated using specific wavelet features, and this method can also be applied to analyze other plant biochemical elements across various species.
View Article and Find Full Text PDF

Moisture content is an important indicator for crop water stress condition, timely and effective monitoring crop water content is of great significance for evaluate crop water deficit balance and guide agriculture irrigation. In order to improve the saturated problems of different forms of typical NDWI (Normalized Different Water Index), we tried to introduce EVI (Enhanced Vegetation Index) to build new vegetation water indices (NDWI#) to estimate crop water content. Firstly, PROSAIL model was used to study the saturation sensitivity of NDWI, and NDWI# to canopy water content and LAI (Leaf Area Index).

View Article and Find Full Text PDF

Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e.

View Article and Find Full Text PDF

Improving winter wheat water use efficiency in the North China Plain (NCP), China is essential in light of current irrigation water shortages. In this study, the AquaCrop model was used to calibrate, and validate winter wheat crop performance under various planting dates and irrigation application rates. All experiments were conducted at the Xiaotangshan experimental site in Beijing, China, during seasons of 2008/2009, 2009/2010, 2010/2011 and 2011/2012.

View Article and Find Full Text PDF

Dataset simulated with FluorMOD and images of wheat in heading stage taken by a ground-based hyperspectral imaging system with 3.3 nm spectral resolution and 0. 71-0.

View Article and Find Full Text PDF

The major limitation of using existing vegetation indices for crop biomass estimation is that it approaches a saturation level asymptotically for a certain range of biomass. In order to resolve this problem, band depth analysis and partial least square regression (PLSR) were combined to establish winter wheat biomass estimation model in the present study. The models based on the combination of band depth analysis and PLSR were compared with the models based on common vegetation indexes from the point of view of estimation accuracy, subsequently.

View Article and Find Full Text PDF