Organic electrode materials (OEMs) have gathered extensive attention for aqueous zinc-ion batteries (AZIBs) due to their structural diversity and molecular designability. However, the reported research mainly focuses on the design of the planar configuration of OEMs and does not take into account the important influence of the spatial structure on the electrochemical properties, which seriously hamper the further performance liberation of OEMs. Herein, this work has designed a series of thioether-linked naphthoquinone-derived isomers with tunable spatial structures and applied them as the cathodes in AZIBs.
View Article and Find Full Text PDFThe slow reaction kinetics and structural instability of organic electrode materials limit the further performance improvement of aqueous zinc-organic batteries. Herein, we have synthesized a Z-folded hydroxyl polymer polytetrafluorohydroquinone (PTFHQ) with inert hydroxyl groups that could be partially oxidized to the active carbonyl groups through the in situ activation process and then undertake the storage/release of Zn . In the activated PTFHQ, the hydroxyl groups and S atoms enlarge the electronegativity region near the electrochemically active carbonyl groups, enhancing their electrochemical activity.
View Article and Find Full Text PDFOrganic materials have attracted much attention in aqueous zinc-ion batteries (AZIBs) due to their sustainability and structure-designable, but their further development is hindered by the high solubility, poor conductivity, and low utilization of active groups, resulting in poor cycling stability, terrible rate capability, and low capacity. In order to solve these three major obstacles, a novel organic host, benzo[b]naphtho[2',3':5,6][1,4]dithiino[2,3-i]thianthrene-5,7,9,14,16,18-hexone (BNDTH), with abundant electroactive groups and stable extended π-conjugated structure is synthesized and composited with reduced graphene oxide (RGO) through a solvent exchange composition method to act as the cathode material for AZIBs. The well-designed BNDTH/RGO composite exhibits a high capacity of 296 mAh g (nearly a full utilization of the active groups), superior rate capability of 120 mAh g , and a long lifetime of 58 000 cycles with a capacity retention of 65% at 10 A g .
View Article and Find Full Text PDFDeveloping flexible electrodes with high active materials loading and excellent mechanical stability is of importance to flexible electronics, yet remains challenging. Herein, robust flexible electrodes with an encapsulated core-multishell structure are developed via a spraying-hydrothermal process. The multilayer electrode possesses an architecture of substrate/reduced graphene oxide (rGO)/bimetallic complex/rGO/bimetallic complex/rGO from the inside to the outside, where the cellulosic fibers serve as the substrate, namely, the core; and the multiple layers of rGO and bimetallic complex, are used as active materials, namely, the shells.
View Article and Find Full Text PDFSnS2 as the promising anode for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) still encounters the undesirable rate performance and cycle stability. Herein, a unique stable structure is developed, where the SnS2 nanocrystals (NCs) are sturdily encapsulated by carbon shells anchored on a reduced graphene oxide (rGO) via the one-pot solvothermal process. The well-controlled carbon shells provide the enduring protection for SnS2 NCs through C-S covalent bonds from the corrosion of electrolyte and pulverization of structure.
View Article and Find Full Text PDFTo reveal a new structure-property relationship regarding the nonlinear optical (NLO) properties of fullerenes that are associated with gamma (γ) density, fullerenes I (C40, C50, C60 and C70), whose heights range from 4.83 to 7.96 Å, and II (C24, C36, C48 and C72), whose widths range from 4.
View Article and Find Full Text PDFZwitterionic complexes have been the subject of great interest in the past several decades due to their multifunctional application in supramolecular chemistry. Herein, a series of internally stable charge-compensated carboranylated square-planar Pt(II) zwitterionic complexes have been explored by density functional theory aim to assessing their structures, the first hyperpolarizabilities, first hyperpolarizability densities, and electronic absorption spectra. It is found that the first hyperpolarizabilities of two-dimensional (2D) structure complexes are much larger with respect to the one-dimensional complex.
View Article and Find Full Text PDFWe designed and fabricated a fluorophore-containing tetradentate carboxylate ligand-based metal-organic framework (MOF) material with open and semiopen channels, which acted as the host for sulfur trapped in Li-S batteries and sensor of benzene homologues. These channels efficiently provide a π-π* conjugated matrix for the charge transfer and guest molecule trapping. The open channel ensured a much higher loading quantitative of sulfur (S content-active material, 72 wt %; electrode, 50.
View Article and Find Full Text PDFDouble carbon-coated LiFePO4 (D-LiFePO4/C) composite with sphere-like structure was synthesized through combination of co-precipitation and solid-state methods. Cetyl-trimethyl-ammonium bromide (CTAB) and citric acid served as two kinds of carbon sources in sequence. SEM images demonstrated that double carbon coating had certain influence on the morphology.
View Article and Find Full Text PDFIn this work, the chemical interaction of cathode and lithium polysulfides (LiPSs), which is a more targeted approach for completely preventing the shuttle of LiPSs in lithium-sulfur (Li-S) batteries, has been established on the electrode level. Through simply posttreating the ordinary sulfur cathode in atmospheric environment just for several minutes, the Au nanoparticles (Au NPs) were well-decorated on/in the surface and pores of the electrode composed of commercial acetylene black (CB) and sulfur powder. The Au NPs can covalently stabilize the sulfur/LiPSs, which is advantageous for restricting the shuttle effect.
View Article and Find Full Text PDFThe effect of graphene lateral size on the electrochemical performance of lithium-sulfur (Li-S) batteries is often ignored. In this study, the thermally exfoliated large lateral-sized graphene (denoted LTG) was employed as the conductive matrix to support sulfur, and its performance was then compared with that of a smaller lateral-sized graphene (denoted STG) for Li-S batteries. The results showed that the LTG-S composite exhibited much higher capacity retention (53%) versus the STG-S (29%) and better rate capabilities.
View Article and Find Full Text PDFStimulated by the preparation and characterization of the isolated pentagon rule (IPR) violating chlorofullerene: C(60)Cl(8) (Nat. Mater. 2008, 7, 790-794), we have performed a systematic investigation on the structural stabilities, electronic and optical properties of the IPR-violating C(60)X(8) (X = H, F, and Cl) fullerene compounds via density functional theory.
View Article and Find Full Text PDFDonor substituted heteroleptic bis-tridentate Ru(II) complexes with different deprotonated forms exhibit larger alterations of the first hyperpolarizabilities in oxidized process and are promising to become redox-switchable nonlinear optical (NLO) molecular materials. For systems with diprotonated form, the β(vec) value of the two-electron-oxidized system ¹3²⁺ is 5.3 and 178.
View Article and Find Full Text PDFThe design principles of a noninvasive ventilator's turbine are studied and discussed in this paper. The design is completed from its several aspects and in combination of related theories, using SolidWorks tools. Abundant experimental results prove that this design's technical specifications meet all the requirements.
View Article and Find Full Text PDFZhongguo Yi Liao Qi Xie Za Zhi
January 2007
The theory of fluorescence resonance energy transfer (FRET) and methods of fluorescence detection in fluorescent-quantitative polymerase chain reaction (FQ-PCR) are introduced in this article. Applications of FRET in fluorescence detection of PCR are emphatically discussed, and FRET research progress and future trends are pointed out too.
View Article and Find Full Text PDFThis paper outlines kinds of index of eyes' optical effect and some different testing methods of intraocular lenses' optical quality.
View Article and Find Full Text PDFConf Proc IEEE Eng Med Biol Soc
October 2012
Chemohyperthermic tumor treatment has developed quite rapidly over the past 20 years, and its therapeutic effect is widely known from clinical practice. More recently it has been realized that whole-body chemohyperthermic tumor treatment by extracorporeal circulation is quite a unique approach with which the patient's blood is withdrawn from femoral artery through a peristaltic pump to a heat-exchanger and then back to the patient's femoral vein. Tumor cells can be effectively killed when the temperature of the blood is controlled at about 42°.
View Article and Find Full Text PDF