Publications by authors named "Hai-long Lu"

is an excellent shade-tolerant warm-season turfgrass. Its poor cold resistance severely limits its promotion and application in temperate regions. Mining cold resistance genes is highly important for the cultivation of cold-resistant .

View Article and Find Full Text PDF

Grasslands, the largest carbon pool in China, possess enormous potential for carbon sequestration. Increasing the stomatal aperture to increase the CO absorption capacity is a potential method to improve plant photosynthetic efficiency and ultimately enhance the carbon sequestration capacity of grass plants. Research on stomatal aperture regulation has focused mostly on Arabidopsis or crops, while research on grass plants in these areas is scarce, which seriously restricts the implementation of this grassland carbon sequestration strategy.

View Article and Find Full Text PDF

The effects of soil pH variations induced by submergence/drainage and biochar application on soil cadmium (Cd) availability to different rice (Oryza sativa L.) varieties are not well understood. This study aims to investigate the possible reasons for available Cd(II) reduction in paddy soil as influenced by biochar and to determine Cd(II) absorption and translocation rates in different parts of various rice varieties.

View Article and Find Full Text PDF

The rapid increase in soil acidity coupled with the deleterious effects of cadmium (Cd) toxicity had led to a decline in worldwide agricultural production. Rice absorbs and accumulates Cd(II) from polluted paddy soils, increasing human health risks throughout the food chain. A 35-day hydroponic experiment with four japonica and four indica (two each of them tolerant and sensitive cultivars) was conducted in this study to investigate the adsorption and absorption of Cd(II) by rice roots as related with surface chemical properties of the roots.

View Article and Find Full Text PDF

Background: Manganese (Mn) is an essential micronutrient for plants, whereas excess Mn(II) in soils leads to its toxicity to crops. Mn(II) is adsorbed onto plant roots from soil solution and then absorbed by plants. Root charge characteristics should affect Mn(II) toxicity to crops and Mn(II) uptake by the roots of the crops.

View Article and Find Full Text PDF

Phyllosilicate minerals are the important components in soils and an important source of activated aluminum (Al) during soil acidification. However, the mechanisms for Al activation in phyllosilicate minerals were not understood well. In this paper, the effect of phyllosilicate surface hydroxyl groups on Al activation during acidification was studied after the minerals were modified with inorganic and organic materials.

View Article and Find Full Text PDF

To explore the effects of the increases in pH and pH buffering capacity (pHBC) induced by crop residue biochars on the changes in soil available Cd content, six acidic paddy soils developed from different parents were amended with seeded sunflower plate biochar (SSPBC), peanut straw biochar (PSBC) and corn straw biochar (CSBC). The pH, pHBC, and available Cd of the soils were measured after laboratory incubation. The results showed that the incorporation of crop residue biochars led to the increases in soil pH and pHBC, but a decrease in soil available Cd content.

View Article and Find Full Text PDF

Incubation experiments were conducted to investigate the influencing factors of pH variation in different paddy soils during submerging/draining alternation and the relationship between pH buffering capacity (pHBC) and Cd speciation in ten paddy soils developed from different parent materials (including 8 acid paddy soils and 2 alkaline paddy soils). The soil pHBC and the changes in soil pH, Eh, Fe, Mn, SO and Cd speciation were determined. The results showed that there was a significant positive correlation between cation exchange capacity (CEC) and pHBC of these paddy soils, indicating that soil CEC is a key factor affecting the pHBC of paddy soils.

View Article and Find Full Text PDF

Biochar was prepared from rice straw and modified with 15% HO and 1:1 HNO/HSO, respectively. The unmodified biochars and HCl treated biochars for carbonate removal were used as control. The biochars were added to the acid paddy soil collected from Langxi, Anhui Province, China at the rate of 30 g/kg.

View Article and Find Full Text PDF

Ion sorption on soil and sediment has been reported to be potentially affected by bacteria which may interact both physically and chemically with solid surfaces. However, whether and how bacteria affect the sorption of inorganic phosphate (P) on soil colloids remains poorly known. Here, we comparably investigated the P sorption on four soil colloids (three highly weathered soils including two Oxisols and one Ultisol and one weakly weathered soil Alfisol) and their complexes with Bacillus subtilis and Pseudomonas fluorescens.

View Article and Find Full Text PDF

Excessive amounts of copper (Cu) in soils causes toxic effects on plants. In this study, 58 rice cultivars were classified into tolerant, moderately tolerant, and susceptible types for Cu(II) toxicity based on 50% germination (LC). Nine japonica rice varieties (three each from the tolerant, moderately tolerant, and susceptible groups) and six indica rice varieties (three from the moderately tolerant and susceptible groups) were selected for the hydroponics experiments.

View Article and Find Full Text PDF

To explore the relationship between Al phytotoxicity and the electrochemical characteristics of wheat root surfaces, a new chemical mechanism for tolerance of wheat to Al toxicity was initially proposed by conducting acute root elongation experiment, adsorption/desorption experiment, streaming potential determination, and infrared spectroscopy (ATR-FTIR) analysis respectively to classify the grade of Al tolerance of 92 wheat cultivars and quantitatively characterize the electrochemical properties of their root surfaces. Then a pot experiment was conducted with the screened wheat cultivars with different Al resistance grown on acid soils to verify their tolerance to Al toxicity. Results show that zeta potentials of the roots of 67 wheat cultivars at pH4.

View Article and Find Full Text PDF

The rapid increase in soil acidification rate has led to a decrease in global agricultural productivity owing to the debilitating effects of Al and Mn toxicities. In this study, we investigated the adaptation of plants to acidic conditions by examining the behavior of plant roots grown in hydroponic solution and pot experiments at different pHs. The Mn(II) sorption by the roots was investigated and the mechanisms involved were deduced by analyzing the changes in the zeta potential and functional groups on the root surface.

View Article and Find Full Text PDF

Variable charge soils have low agricultural productivity associated with low pH, low cation exchange capacity (CEC), and low pH buffering capacity (pHBC). As a result of rapid acidification rates, these soils are prone to infertility resulting from Al phytotoxicity and deficiency of P, Ca, Mg, and K, and thus require amendments that can ameliorate soil acidity and enhance soil CEC and pHBC. A 30-day pot experiment was carried out using a clay Ultisol and a sandy Ultisol amended with straw decayed products (SDPs) of peanut, pea, canola, and rice.

View Article and Find Full Text PDF

The roots of 4 japonica, 4 indica, and 7 hybrid rice varieties were obtained by hydroponic experiment and used to explore the relationship between charge characteristics and exchangeable manganese(II) (Mn(II)) on rice roots and Mn(II) absorption in roots and shoots of the rice. Results indicated Mn(II) adsorbed on rice roots mainly existed as exchangeable Mn(II) after 2 h. The roots of indica and hybrid rice carried more negative charges than the roots of japonica rice.

View Article and Find Full Text PDF

The phosphorus (P) supply is mismatched with rice demand in the early and late stages of rice growth, which primarily results in low P use efficiency and high environmental risk. In recent years, the use of the natural periphyton in nutrient regulation in paddy fields has attracted much research interest. However, a mechanistic understanding of the action of periphyton on P biogeochemical cycling during the pivotal stages of rice growth has received little attention.

View Article and Find Full Text PDF

The relationship between the chemical forms of Cu and Cd adsorbed on the roots of different wheat cultivars and their phytotoxic effects on the plants were investigated. The wheat varieties Dunmaiwang (DMW), Tekang 6 (TK6), Zhongmai895 (ZM895), and Chaojixiaomai (AK68) were used. The zeta potentials of wheat roots, measured by the streaming potential method, were used to characterize root charge properties.

View Article and Find Full Text PDF

To explore the relationship between charge characteristics of rice roots and aluminum (Al) tolerance of rice, roots of 47 different rice genotypes were obtained by hydroponic experiment. The zeta potentials of roots were determined by streaming potential method, and the Al tolerance and the functional groups of rice were measured by relative root elongation and infrared spectroscopy (ATR-FTIR), respectively. The exchangeable, complexed and precipitated Al(III) sorbed on the root surface of rice was extracted with 1 mol L KNO, 0.

View Article and Find Full Text PDF

The pathogenesis of Alzheimer's disease (AD) is well documented to involve mitochondrial dysfunction which causes subsequent oxidative stress and energy metabolic failure in hippocampus. Methylene blue (MB) has been implicated to be neuroprotective in a variety of neurodegenerative diseases by restoring mitochondrial function. The present work was to examine if MB was able to improve streptozotocin (STZ)-induced Alzheimer's type dementia in a rat model by attenuating mitochondrial dysfunction-derived oxidative stress and ATP synthesis decline.

View Article and Find Full Text PDF

Gas hydrates are important potential energy resources. Microstructural characterization of gas hydrate can provide information to study the mechanism of gas hydrate formation and to support the exploitation and application of gas hydrate technology. This article systemly introduces the basic principle of laser Raman spectroscopy and summarizes its application in gas hydrate studies.

View Article and Find Full Text PDF

The automatic cleaning machine we have developed, adopts a SCM system in automatic cleaning. The machine has five functions: ultrasonic cleaning, cold or hot water spraying, drying and greasing. The clinical applications show that the machine with a good effectiveness is suitable for the cleaning of many surgical instruments.

View Article and Find Full Text PDF