Increasing sulfate input has been seen as an issue in management of aquatic ecosystems, but its influences on eutrophic freshwater lakes is not clear. In this study, it was observed that increasing sulfate concentration without additional cyanobacterial bloom biomass (CBB) addition did not have an obvious effect on element cycling during 1-year continuous flow mesocosm experiments in which water and sediments were taken from a shallow eutrophic lake with sulfate levels near 1 mM. However, following addition of CBB to mesocosms, sulfate-reducing bacteria (SRB) were observed in the water column, and increasing numbers of SRB in the water column were associated with higher sulfate input.
View Article and Find Full Text PDFSettlement of cyanobacterial bloom biomass (CBB) into sediments in eutrophic lakes often induced the occurrence of black water agglomerate and then water quality deterioration. This study investigated the effect of sediment microbial fuel cell (SMFC) on CBB removal in sediments and related water pollution. Sediment bulking and subsequent black water from decomposition of settled CBB happened without SMFC, but were not observed over 100-day experiments with SMFC employment.
View Article and Find Full Text PDFThe phylogenetic diversity of the microbial community assemblage of the carpet-like mucilaginous cyanobacterial blooms in the eutrophic Lake Taihu was investigated. 16S ribosomal DNA clone libraries produced from the DNA of cyanobacterial assemblages that had been washed to remove unattached bacteria contained only cyanobacteria. However, a further treatment which included grinding the freeze-dried material to physically detach cells followed by the removal of larger cells by filtration allowed us to detect a large variety of bacteria within the cyanobacterial bloom community.
View Article and Find Full Text PDFCaulobacteria are presumed to be responsible for considerable mineralization of organic material in aquatic environments. In this study, a facultative, mesophilic and cellulolytic bacterium Caulobacter sp. FMC1 was isolated from sediments which were taken from a shallow freshwater lake and then enriched with amendment of submerged macrophyte for three months.
View Article and Find Full Text PDFIn this study, single-chamber microbial fuel cells (MFCs) were inoculated with sedimentary samples taken from one freshwater shallow lake. After 98 days of operation, it was found that sedimentary inocula had strong effect on MFC performances, and Fe(III) contents in sediments were significantly related to voltage values produced from MFCs. Inoculation of the sedimentary sample from the site with the highest Fe(III) content led to the production of the highest voltage with a value of 580 mV, while voltage from the MFC inoculated with sediments from the site with the lowest Fe(III) concentration was less than 30 mV at the end of the experiments.
View Article and Find Full Text PDF