Publications by authors named "Hai-Young Kim"

The higher order structure (HOS) of monoclonal antibodies (mAbs) is an important quality attribute with strong contribution to clinically relevant biological functions and drug safety. Due to the multi-faceted nature of HOS, the synergy of multiple complementary analytical approaches can substantially improve the understanding, accuracy, and resolution of HOS characterization. In this study, we applied one- and two-dimensional (1D and 2D) nuclear magnetic resonance (NMR) spectroscopy coupled with chemometric analysis, as well as circular dichroism (CD), differential scanning calorimetry (DSC), and fluorescence spectroscopy as orthogonal methods, to characterize the impact of methionine (Met) oxidation on the HOS of an IgG1 mAb.

View Article and Find Full Text PDF

Characterizing changes in the higher order structure (HOS) of monoclonal antibodies upon stressed conditions is critical to gaining a better understanding of the product and process. One single biophysical approach may not be best suited to assess HOS comprehensively; thus, the synergy from multiple, complementary approaches improves characterization accuracy and resolution. In this study, we employed two mass spectrometry (MS )-based footprinting techniques, namely, fast photochemical oxidation of proteins (FPOP)-MS and hydrogen-deuterium exchange (HDX)-MS, supported by dynamic light scattering (DLS), differential scanning calorimetry (DSC), circular dichroism (CD), and nuclear magnetic resonance (NMR) to study changes to the HOS of a mAb upon thermal stress.

View Article and Find Full Text PDF
Article Synopsis
  • The study uses NMR spectroscopy to analyze the higher order structure (HOS) of monoclonal antibodies, specifically adalimumab and trastuzumab, after they undergo forced degradation compared to their unstressed forms.
  • Samples were incubated under different pH conditions at 40°C for four weeks, and various chemometric methods were employed to examine differences in their NMR spectra.
  • Results indicate no significant structural changes in adalimumab but reveal notable conformational changes in trastuzumab, highlighting the effectiveness of chemometric analysis in detecting subtle differences in antibody structure after stress.
View Article and Find Full Text PDF

With the emergence and rapid spreading of NDM-1 and existence of clinically relevant VIM-1 and IMP-1, discovery of pan inhibitors targeting metallo-beta-lactamases (MBLs) became critical in our battle against bacterial infection. Concurrent with our fragment and high-throughput screenings, we performed a knowledge-based search of known metallo-beta-lactamase inhibitors (MBLIs) to identify starting points for early engagement of medicinal chemistry. A class of compounds exemplified by , discovered earlier as metallo-beta-lactamase inhibitors, was selected for virtual screening.

View Article and Find Full Text PDF
Article Synopsis
  • * The study focused on how immune complexes formed by biotherapeutic antibodies and tumor necrosis factor (TNF) affect peptide presentation in dendritic cells, using mass spectrometry to analyze the resulting HLAII immunopeptidome.
  • * Results showed that around 12,000 unique HLAII-associated peptides were identified, with anti-TNF sequences contributing a small proportion, indicating a complex relationship between therapy-induced immune responses and the presentation of therapeutic peptides.
View Article and Find Full Text PDF

Synthesis of medium-sized rings is known to be challenging due to high transannular strain especially for 9- and 10-membered rings. Herein we report design and synthesis of unprecedented 9- and 10-membered purine 8,5'-cyclonucleosides as the first cyclonucleoside PRMT5 inhibitors. The cocrystal structure of PRMT5:MEP50 in complex with the synthesized 9-membered cyclonucleoside 1 revealed its binding mode in the SAM binding pocket of PRMT5.

View Article and Find Full Text PDF

Comprehensive synthetic strategies afforded a diverse set of structurally unique bicyclic proline-containing arginase inhibitors with a high degree of three-dimensionality. The analogs that favored the Cγ-exo conformation of the proline improved the arginase potency over the initial lead. The novel synthetic strategies reported here not only enable access to previously unknown stereochemically complex proline derivatives but also provide a foundation for the future synthesis of bicyclic proline analogs, which incorporate inherent three-dimensional character into building blocks, medicine, and catalysts and could have a profound impact on the conformation of proline-containing peptides and macrocycles.

View Article and Find Full Text PDF

Recent data suggest that the inhibition of arginase (ARG) has therapeutic potential for the treatment of a number of indications ranging from pulmonary and vascular disease to cancer. Thus, high demand exists for selective small molecule ARG inhibitors with favorable druglike properties and good oral bioavailability. In light of the significant challenges associated with the unique physicochemical properties of previously disclosed ARG inhibitors, we use structure-based drug design combined with a focused optimization strategy to discover a class of boronic acids featuring a privileged proline scaffold with superior potency and oral bioavailability.

View Article and Find Full Text PDF

Protein higher order structure (HOS) is an important product quality attribute that governs the structure-function characteristics, safety, and efficacy of therapeutic proteins. Infrared (IR) spectroscopy has long been recognized as a powerful biophysical tool in determining protein secondary structure and monitoring the dynamic structural changes. Such biophysics analyses help establish process and product knowledge, understand the impact of upstream (cell culture) and downstream (purification) process conditions, create stable formulations, monitor product stability, and assess product comparability when process improvements are implemented (or establish biosimilarity to originator products).

View Article and Find Full Text PDF

The metazoan second messenger 2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) is a cyclic dinucleotide (CDN) that induces secretion of type I interferons and activates the immune system and has thus attracted significant interest as a vaccine adjuvant or immunotherapeutic. CDN bisphosphorothioates are of particular interest because of their increased hydrolytic stability and improved cell activities. In our work with CDN bisphosphorothioates, we sought a method for systematic determination of the absolute stereochemistry of their phosphorothioate stereocenters.

View Article and Find Full Text PDF

The action of arginase, a metalloenzyme responsible for the hydrolysis of arginine to urea and ornithine, is hypothesized to suppress immune-cell activity within the tumor microenvironment, and thus its inhibition may constitute a means by which to potentiate the efficacy of immunotherapeutics such as anti-PD-1 checkpoint inhibitors. Taking inspiration from reported enzyme-inhibitor cocrystal structures, we designed and synthesized novel inhibitors of human arginase possessing a fused 5,5-bicyclic ring system. The prototypical member of this class, , when dosed orally, successfully demonstrated serum arginase inhibition and concomitant arginine elevation in a syngeneic mouse carcinoma model, despite modest oral bioavailability.

View Article and Find Full Text PDF

Ni/photoredox (4DPAIPN) dual catalysis enabled challenging peptide C(sp)-O coupling reactions. Successful cross-coupling reactions were demonstrated with highly functionalized alcohols including side chains of amino acids (, serine, threonine, tyrosine), -4-hydroxy-l-proline, alkyl alcohols, alkynylated alcohols, and carbohydrates. Coupling reactions between bromobenzoyl-capped peptides containing various side chains and either a protected serine building block or a serine-containing dipeptide also proceeded efficiently.

View Article and Find Full Text PDF

Two radical-based approaches have been developed to effect the trifluoromethylation of aryl C-H bonds in native peptides either using stoichiometric oxidant or visible light photoredox catalysis. The reported methods are able to derivatize tyrosine and tryptophan sidechains under biocompatible conditions, and a number of examples are reported involving fully unprotected peptides with up to 51 amino acids. The development of this chemistry adds to the growing array of chemical methods for selectively modifying amino acid residues in the context of complex peptides.

View Article and Find Full Text PDF

Recently, it has been reported that large J correlations can sometimes be observed in 1,1-ADEQUATE spectra with significant intensity, which opens the possibility of structural misassignment. In this work, we have focused on pyrimidine-based compounds, which exhibit multiple bond correlations in the 1,1-ADEQUATE experiment as a consequence of J coupling constants greater than 10 Hz. Results are supported by both the experimental measurement of J coupling constants in question using J-modulated-ADEQUATE and density functional theory calculations.

View Article and Find Full Text PDF

Recent advances in understanding the relevance of noncoding RNA (ncRNA) to disease have increased interest in drugging ncRNA with small molecules. The recent discovery of ribocil, a structurally distinct synthetic mimic of the natural ligand of the flavin mononucleotide (FMN) riboswitch, has revealed the potential chemical diversity of small molecules that target ncRNA. Affinity-selection mass spectrometry (AS-MS) is theoretically applicable to high-throughput screening (HTS) of small molecules binding to ncRNA.

View Article and Find Full Text PDF

Fragment-based drug design (FBDD) comprises both fragment-based screening (FBS) to find hits and elaboration of these hits to lead compounds. Typical fragment hits have lower molecular weight (<300-350 Da) and lower initial potency but higher ligand efficiency when compared to those from high-throughput screening. NMR spectroscopy has been widely used for FBDD since it identifies and localizes the binding site of weakly interacting hits on the target protein.

View Article and Find Full Text PDF

Serine/arginine-rich (SR) proteins are important players in RNA metabolism and are extensively phosphorylated at serine residues in RS repeats. Here, we show that phosphorylation switches the RS domain of the serine/arginine-rich splicing factor 1 from a fully disordered state to a partially rigidified arch-like structure. Nuclear magnetic resonance spectroscopy in combination with molecular dynamics simulations revealed that the conformational switch is restricted to RS repeats, critically depends on the phosphate charge state and strongly decreases the conformational entropy of RS domains.

View Article and Find Full Text PDF

Protein folding and unfolding are crucial for a range of biological phenomena and human diseases. Defining the structural properties of the involved transient species is therefore of prime interest. Using a combination of cold denaturation with NMR spectroscopy, we reveal detailed insight into the unfolding of the homodimeric repressor protein CylR2.

View Article and Find Full Text PDF

Conformational changes are essential for protein-protein and protein-ligand recognition. Here we probed changes in the structure of the protein ubiquitin at low temperatures in supercooled water using NMR spectroscopy. We demonstrate that ubiquitin is well folded down to 263 K, although slight rearrangements in the hydrophobic core occur.

View Article and Find Full Text PDF

The major component of neural inclusions that are the pathological hallmark of Parkinson's disease are amyloid fibrils of the protein α-synuclein (aS). Here we investigated if the disease-related mutation A30P not only modulates the kinetics of aS aggregation, but also alters the structure of amyloid fibrils. To this end we optimized the method of quenched hydrogen/deuterium exchange coupled to NMR spectroscopy and performed two-dimensional proton-detected high-resolution magic angle spinning experiments.

View Article and Find Full Text PDF

Long-range structural information derived from paramagnetic relaxation enhancement observed in the presence of a paramagnetic nitroxide radical is highly useful for structural characterization of globular, modular and intrinsically disordered proteins, as well as protein-protein and protein-DNA complexes. Here we characterized the conformation of a spin-label attached to the homodimeric protein CylR2 using a combination of X-ray crystallography, electron paramagnetic resonance (EPR) and NMR spectroscopy. Close agreement was found between the conformation of the spin label observed in the crystal structure with interspin distances measured by EPR and signal broadening in NMR spectra, suggesting that the conformation seen in the crystal structure is also preferred in solution.

View Article and Find Full Text PDF

Increasing evidence suggests that phosphorylation may play an important role in the oligomerization, fibrillogenesis, Lewy body (LB) formation, and neurotoxicity of alpha-synuclein (alpha-syn) in Parkinson disease. Herein we demonstrate that alpha-syn is phosphorylated at S87 in vivo and within LBs. The levels of S87-P are increased in brains of transgenic (TG) models of synucleinopathies and human brains from Alzheimer disease (AD), LB disease (LBD), and multiple system atrophy (MSA) patients.

View Article and Find Full Text PDF

Soluble oligomers are potent toxins in many neurodegenerative diseases, but little is known about the structure of soluble oligomers and their structure-toxicity relationship. Here we prepared on-pathway oligomers of the 140-residue protein alpha-synuclein, a key player in Parkinson's disease, at concentrations an order of magnitude higher than previously possible. The oligomers form ion channels with well-defined conductance states in a variety of membranes, and their beta-structure differs from that of amyloid fibrils of alpha-synuclein.

View Article and Find Full Text PDF