Cyclodipeptide synthases (CDPSs) catalyze the synthesis of diverse cyclodipeptides (CDPs) by utilizing two aminoacyl-tRNA (aa-tRNA) substrates in a sequential ping-pong reaction mechanism. Numerous CDPSs have been characterized to provide precursors for diketopiperazines (DKPs) with diverse structural characteristics and biological activities. BcmA, belonging to the XYP subfamily, is a cyclo(l-Ile-l-Leu)-synthesizing CDPS involved in the biosynthesis of the antibiotic bicyclomycin.
View Article and Find Full Text PDFThe berberine bridge enzyme (BBE)-like flavoproteins have attracted continuous attention for their capability to catalyze various oxidative reactions. Here we demonstrate that MitR, a secreted BBE-like enzyme, functions as a special drug-binding efflux protein evolved from quinone reductase. Moreover, this protein provides self-resistance to its hosts toward the DNA-alkylating agent mitomycin C with a distinctive strategy, featured by independently performing drug binding and efflux.
View Article and Find Full Text PDFBackground: Streptomyces are well known for their potential to produce various pharmaceutically active compounds, the commercial development of which is often limited by the low productivity and purity of the desired compounds expressed by natural producers. Well-characterized promoters are crucial for driving the expression of target genes and improving the production of metabolites of interest.
Results: A strong constitutive promoter, stnYp, was identified in Streptomyces flocculus CGMCC4.
Self-resistance determinants are essential for the biosynthesis of bioactive natural products and are closely related to drug resistance in clinical settings. The study of self-resistance mechanisms has long moved forward on the discovery of new resistance genes and the characterization of enzymatic reactions catalyzed by these proteins. However, as more examples of self-resistance have been reported, it has been revealed that the enzymatic reactions contribute to self-protection are not confined to the cellular location where the final toxic compounds are present.
View Article and Find Full Text PDFThe biochemical elucidation of the early biosynthetic pathways of miharamycins and amipurimycin revealed the roles of several enzymes, which include GMP hydrolase, represented by MihD/ApmD, and hypothetical proteins, MihI/ApmI, unexpectedly exhibiting the dual function of the guanylglucuronic acid assembly and GMP cleavage. In addition, MihE, a carbonyl reductase that functions on the C2 branch of high-carbon sugars, and MihF, a rare guanine -methyltransferase, were also functionally verified.
View Article and Find Full Text PDFMiharamycins are peptidyl nucleoside antibiotics with a unique branched C9 pyranosyl amino acid core and a rare 2-aminopurine moiety. Inactivation of 19 genes in the biosynthetic gene cluster and identification of several unexpected intermediates suggest an alternative biosynthetic pathway, which is further supported by feeding experiments and characterization of an unusual adenylation domain recognizing a complex nucleoside derivative as the substrate. These results thereby provide an unprecedented biosynthetic route of high-carbon sugar catalyzed by atypical hybrid nonribosomal peptide synthetase-polyketide synthase.
View Article and Find Full Text PDFOne biosynthetic gene cluster (BGC) usually governs the biosynthesis of a series of compounds exhibiting either the same or similar molecular scaffolds. Reported here is a multiplex activation strategy to awaken a cryptic BGC associated with tetracycline polyketides, resulting in the discovery of compounds having different core structures. By constitutively expressing a positive regulator gene in tandem mode, a single BGC directed the biosynthesis of eight aromatic polyketides with two types of frameworks, two pentacyclic isomers and six glycosylated tetracyclines.
View Article and Find Full Text PDFFeeding studies indicate a possible synthetic pattern for the N-terminal cis-aminocyclopentane carboxylic acid (ACPC) and suggest an unusual source of the high-carbon sugar skeleton of amipurimycin (APM). The biosynthetic gene cluster of APM was identified and confirmed by in vivo experiments. A C9 core intermediate was discovered from null mutants of ACPC pathway, and an ATP-grasp enzyme (ApmA8) was reconstituted in vitro for ACPC loading.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
May 2019
The biosynthetic gene clusters for herbicidins ( hbc) and aureonuclemycin ( anm) were identified in Streptomyces sp. KIB-027 and Streptomyces aureus, respectively. The roles of genes possibly involved in post-core-assembly steps in herbicidin biosynthesis in these clusters and a related her cluster were studied.
View Article and Find Full Text PDFUsing a highly effective heterologous expression system, the YM-216391 (1) biosynthetic gene cluster was engineered to yield aurantizolicin (2) and the hybrid compound 3. Both of these compounds were isolated and fully structurally characterised and the bioactivity was evaluated. The results indicate that compound 3 exhibits significantly improved antitumor activity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2018
Aromatic-fused γ-pyrones are structural features of many bioactive natural products and valid scaffolds for medicinal chemistry. However, the enzymology of their formation has not been completely established. Now it is demonstrated that TxnO9, a CalC-like protein belonging to a START family, functions as an unexpected anthraquinone-γ-pyrone synthase involved in the biosynthesis of antitumor antibiotic trioxacarcin A (TXN-A).
View Article and Find Full Text PDFOxygen-containing heterocycles are widely encountered in natural products that display diverse pharmacological properties and have potential benefits to human health. The formation of O-heterocycles catalyzed by different types of enzymes in the biosynthesis of natural products not only contributes to the structural diversity of these compounds, but also enriches our understanding of nature's ability to construct complex molecules. This minireview focuses on the various modes of enzymatic O-heterocyclization identified in natural product biosynthesis and summarizes the possible mechanisms involved in ring closure.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2018
As a commercial antibiotic, bicyclomycin (BCM) is currently the only known natural product targeting the transcription termination factor rho. It belongs to a family of highly functionalized diketopiperazine (DKP) alkaloids and bears a unique O-bridged bicyclo[4.2.
View Article and Find Full Text PDFBacterial aromatic polyketides, exemplified by anthracyclines, angucyclines, tetracyclines, and pentangular polyphenols, are a large family of natural products with diverse structures and biological activities and are usually biosynthesized by type II polyketide synthases (PKSs). Since the starting point of biosynthesis and combinatorial biosynthesis in 1984-1985, there has been a continuous effort to investigate the biosynthetic logic of aromatic polyketides owing to the urgent need of developing promising therapeutic candidates from these compounds. Recently, significant advances in the structural and mechanistic identification of enzymes involved in aromatic polyketide biosynthesis have been made on the basis of novel genetic, biochemical, and chemical technologies.
View Article and Find Full Text PDFTrioxacarcin A is a polyoxygenated, structurally complex antibiotic produced by Streptomyces spp., which possesses high anti-bacterial, anti-malaria, and anti-tumor activities. The trioxacarcin biosynthetic pathway involves type II polyketide synthases (PKSs) with L-isoleucine as a unique starter unit, as well as many complex post-PKS tailoring enzymes and resistance and regulatory proteins.
View Article and Find Full Text PDFTrioxacarcins (TXNs) are highly oxygenated, polycyclic aromatic natural products with remarkable biological activity and structural complexity. Evidence from C-labelled precursor feeding studies demonstrated that the scaffold was biosynthesized from one unit of l-isoleucine and nine units of malonyl-CoA, which suggested a different starter unit in the biosynthesis. Genetic analysis of the biosynthetic gene cluster revealed 56 genes encoding a type II polyketide synthase (PKS), combined with a large amount of tailoring enzymes.
View Article and Find Full Text PDFIn this work, two enzymes responsible for the biogenesis of possible [4 + 2] reaction precursors in the quartromicin biosynthetic pathway were characterized: acetylation of 1 to yield 2 was catalyzed by QmnD3, and subsequent acetic acid elimination of 2 to form double bond product 3 was catalyzed by QmnD4. Site-directed mutagenesis assay of QmnD3 and QmnD4 was investigated, and a general base-catalyzed mechanism for QmnD4 is proposed.
View Article and Find Full Text PDFRamoplanin is a lipopeptide antibiotic active against multi-drug-resistant, Gram-positive pathogens. Structurally, it contains a di-mannose moiety attached to the peptide core at Hpg(11). The biosynthetic gene cluster of ramoplanin has already been reported and the assembly of the depsipeptide has been elucidated but the mechanism of transferring sugar moiety to the peptide core remains unclear.
View Article and Find Full Text PDFBiotechnol Lett
October 2013
Ramoplanins are lipopeptides effective against a wide range of Gram-positive pathogens. Ramoplanin A2 is in Phase III clinical trials. The structure-activity relationship of the unique 2Z,4E-fatty acid side-chain of ramoplanins indicates a significant contribution to the antimicrobial activities but ramoplanin derivatives with longer 2Z,4E-fatty acid side-chains are not easy to obtain by semi-synthetic approaches.
View Article and Find Full Text PDFKosinostatin (KST), an antitumor antibiotic, features a pyrrolopyrrole moiety spirally jointed to a five-membered ring of an anthraquinone framework glycosylated with a γ-branched octose. By a combination of in silico analysis, genetic characterization, biochemical assay, and precursor feeding experiments, a biosynthetic pathway for KST was proposed, which revealed (1) the pyrrolopyrrole moiety originates from nicotinic acid and ribose, (2) the bicyclic amidine is constructed by a process similar to the tryptophan biosynthetic pathway, and (3) a discrete adenylation enzyme and a peptidyl carrier protein (PCP) are responsible for producing a PCP-tethered building block parallel to type II polyketide synthase (PKS) rather than for the PKS priming step by providing the starter unit. These findings provide an opportunity to further explore the inexplicable enzymatic logic that governs the formation of pyrrolopyrrole moiety and the spirocyclic skeleton.
View Article and Find Full Text PDFThe antiviral compounds quartromicins represent unique members of a family of spirotetronate natural products. In this study, a biosynthetic gene cluster of quartromicins was identified by degenerate primer PCR amplification of specific genes involved in the biosynthesis of the tetronate moiety. The biochemical results confirmed that 1,3-bisphosphoglycerate was incorporated into the tetronate ring, and the intermediates of this ring were also reconstructed in vitro.
View Article and Find Full Text PDFRamoplanins produced by Actinoplanes are new structural class of lipopeptide and are currently in phase III clinical trials for the prevention of vancomycin-resistant enterococcal infections. The depsipeptide structures of ramoplanins are synthesized by non-ribosomal peptide synthetases (NRPS). Romo-orf17, a stand-alone NRPS, is responsible for the recruitment of Thr into the linear NRPS pathways for which the corresponding adenylation domain is absent.
View Article and Find Full Text PDFPhoslactomycins (PLMs) are inhibitors of protein serine/threonine phosphatase 2A showing diverse and important antifungal, antibacterial and antitumor activity. PLMs are polyketide natural products and produced by several Streptomyces species. The PLMs biosynthetic gene clusters were identified from Streptomyces platensis SAM-0654 and localized in two separate genomic regions, consisting of 27 open reading frames that encode polyketide synthases (PKSs), enzymes for cyclohexanecarboxyl-CoA (CHC-CoA) and ethylmalonyl-CoA (Em-CoA) synthesis, enzymes for post-PKS modifications, proposed regulators, and putative resistance transporters.
View Article and Find Full Text PDFYM-216391, an antitumor natural product, represents a new class of cyclic peptides containing a polyoxazole-thiazole moiety. Herein we describe its gene cluster encoding the biosynthetic paradigm featuring a ribosomally synthesizing precursor peptide followed by a series of novel posttranslational modifications, which include (i) cleavage of both N-terminal leader peptide and C-terminal extension peptide and cyclization in a head-to-tail fashion, (ii) conversion of an L-Ile to D-allo-Ile, and (iii) β-hydroxylation of Phe by a P450 monooxygenase followed by further heterocyclization and oxidation to form a phenyloxazole moiety. The cluster was heterologously expressed in Streptomyces lividans to bypass difficult genetic manipulation.
View Article and Find Full Text PDF