Rheumatoid arthritis is a chronic and systemic autoimmune disease characterized by inflammatory cell infiltration and joint erosion. Human adipose-derived mesenchymal stem cells (hASCs) have shown the capacity of suppressing effector T cell activation and inflammatory cytokine expression. We investigated whether hASCs play a therapeutic role in collagen-induced arthritis (CIA) by administering a single dose of hASCs in mice with established CIA.
View Article and Find Full Text PDFDrug resistance is one of the leading causes of failed cancer therapy in the treatment of acute myeloid leukemia. Although the mechanisms of resistance are poorly understood, they may be related to the presence of leukemia stem cells (LSCs). Down-regulation of the miR-203 reportedly contributes to oncogenesis and chemo-resistance in multiple cancers.
View Article and Find Full Text PDFBackground: Acute myeloid leukemia (AML) is initiated and maintained by a subset of self-renewing leukemia stem cells (LSCs), which contribute to the progression, recurrence and therapeutic resistance of leukemia. However, the mechanisms underlying the maintenance of LSCs drug resistance have not been fully defined. In this study, we attempted to elucidate the mechanisms of LSCs drug resistance.
View Article and Find Full Text PDFMicroRNAs (miRNA) are a class of noncoding RNA molecules that regulate gene expression by an RNA-interfering pathway through cleavage or inhibition of the translation of target mRNA. The 254 cattle miRNA candidates found by homology searching frequently clustered at certain chromosomes, and some are possibly expressed from more than one genomic locus. They were partially verified by cloning from a small cattle RNA library, where 31 distinct miRNAs were identified: 18 previously registered in the database of miRBase, 11 novel and homologous to known mammalian miRNAs, and 2 potentially novel without homology to any known miRNAs.
View Article and Find Full Text PDF