Basic fibroblast growth factor (bFGF) is a mitogenic cytokine that can stimulate mesoderm-and neuroectoderm-originated cell proliferation. This study was performed to investigate the effects of bFGF on cell differentiation and the expression of specific markers at different embryonic developmental stages. We firstly evaluated the embryotoxic potential of bFGF in vitro using a modified EST protocol.
View Article and Find Full Text PDFBackground: The inflammatory insult associated with cardiopulmonary bypass (CPB) continues to result in morbidity for neonates undergoing complex repair of congenital cardiac defects. Complement and contact activation are important mediating processes involved in this injury. Complement factor 1 esterase inhibitor (C1-inh), a natural inhibitor of complement, kallikrein, and coagulation pathways, may be decreased in children undergoing cardiac operations requiring CPB.
View Article and Find Full Text PDFTo determine the role of inhibition of complement activation in the contractile function of skeletal muscle ischemia-reperfusion (I/R) injury, the rat extensor digitorum longus (EDL) muscles underwent 3 h ischemia and received human C1-esterase inhibitor (C1-INH, 100 IU/kg), a synthetic C1q A chain peptide with a similar inhibitory effect on activated C1 (peptide, 5 mg/kg), or human serum albumin control. Results showed a significant overall increase in tetanic contractile forces of the reperfused EDL in both C1-INH and peptide groups compared to controls. Maximum improvement occurred with peptide treatment at 120-Hz stimulation, with an increase in force from 38 +/- 4% of normal in controls to 52 +/- 4% in peptide-treated rats.
View Article and Find Full Text PDF