DNA binding inhibitory factor 3 (ID3) has been shown to have a key role in maintaining proliferation and differentiation. It has been suggested that ID3 may also affect mammalian ovarian function. However, the specific roles and mechanisms are unclear.
View Article and Find Full Text PDFThe millicharged particle has become an attractive topic to probe physics beyond the Standard Model. In direct detection experiments, the parameter space of millicharged particles can be constrained from the atomic ionization process. In this work, we develop the relativistic impulse approximation (RIA) approach, which can duel with atomic many-body effects effectively, in the atomic ionization process induced by millicharged particles.
View Article and Find Full Text PDFUnlabelled: Phenylketonuria (PKU) is caused by variants in the phenylalanine hydroxylase (PAH) gene. We systematically investigated all 13 exons of the PAH gene and their flanking introns in 31 unrelated patients and their parents using next-generation sequencing (NGS). A total of 33 different variants were identified in 58 of 62 mutant PAH alleles.
View Article and Find Full Text PDFZhonghua Xue Ye Xue Za Zhi
November 2011
Objective: To analyze the differential proteomics in human umbilical cord mesenchymal stem cells (MSC) induced by chemical hypoxia-mimetic agent cobalt chloride (CoCl(2)) by two-dimensional gel electrophoresis (2-DE) and mass-spectrometry.
Methods: 2-DE was performed to separate proteins from treated and untreated human umbilical cord MSC with CoCl(2). 2-DE images were analyzed by ImageMaster 2D Platinum software 6.
Background: The therapeutic efficacy of human mesenchymal stem cells (hMSCs) for the treatment of hypoxic-ischemic diseases is closely related to level of hypoxia in the damaged tissues. To elucidate the potential therapeutic applications and limitations of hMSCs derived from human umbilical cords, the effects of hypoxia on the morphology and proliferation of hMSCs were analyzed.
Results: After treatment with DFO and CoCl₂, hMSCs were elongated, and adjacent cells were no longer in close contact.
As an in vitro model for type II human lung cancer, A549 cells resist cytotoxicity via phosphorylation of proteins as demonstrated by many studies. However, to date, no large-scale phosphoproteome investigation has been conducted on A549. Here, we performed a systematical analysis of the phosphoproteome of A549 by using mass spectrometry (MS)-based strategies.
View Article and Find Full Text PDFBackground: The proteasome inhibitor bortezomib represents an important advance in the treatment of multiple myeloma (MM). Bortezomib inhibits the activity of the 26S proteasome and induces cell death in a variety of tumor cells; however, the mechanism of cytotoxicity is not well understood.
Methodology/principal Findings: We investigated the differential phosphoproteome upon proteasome inhibition by using stable isotope labeling by amino acids in cell culture (SILAC) in combination with phosphoprotein enrichment and LC-MS/MS analysis.
Objective: To establish methods for quantitative determination of ginseng saponins, ginsenoside Rg1, Re, Rb1 and polysaccarides and compare the qualities of Tongrentang Red Ginseng and Korean Red Ginseng.
Method: Macroreticular resin-colorimetric method was developed to determine ginseng saponins and a new HPLC method with gradient eluents was established for determination of ginsenoside Rg1, Re, Rb1. For ginseng polysaccharides, phenol-oil of vitriol colorimetric method was developed and some factors were also optimized.