Publications by authors named "Hai-Nan Xie"

Background: Traumatic aniridia occurs when the iris is extruded from the eye and is often accompanied by lens injuries. However, traumatic aniridia due to dislocation of the iris into the vitreous cavity without lens damage has never been reported.

Case Presentation: A 30-year-old man presented with visual loss and pain for 6 h after a thin wire injured his right eyeball.

View Article and Find Full Text PDF

Aim: To describe the clinical heterogeneity of patients with novel mutations in .

Methods: All the members in the two Chinese families underwent detailed clinical evaluations including best-corrected visual acuity, slit-lamp examination, applanation tonometry, and dilated fundus examination. Fundus autofluorescence, fundus fluorescein angiography, spectral-domain optical coherence tomography, electrooculography, and electroretinogram were also performed.

View Article and Find Full Text PDF

Axenfeld-Rieger syndrome (ARS) is a disorder affecting the anterior segment of the eye and causing systemic malformations, and follows an autosomal-dominant inheritance pattern. The aim of the present study was to identify the underlying cause of ARS in a Chinese family. Genomic DNA was extracted from the peripheral blood of the subjects from a family with ARS.

View Article and Find Full Text PDF

Understanding the origins of lipid membrane bilayer rearrangement in response to external stimuli is an essential component of cell biology and the bottom-up design of liposomes for biomedical applications. The enzymes phospholipase C and D (PLC and PLD) both cleave the phosphorus-oxygen bonds of phosphate esters in phosphatidylcholine (PC) lipids. The atomic position of this hydrolysis reaction has huge implications for the stability of PC-containing self-assembled structures, such as the cell wall and lipid-based vesicle drug delivery vectors.

View Article and Find Full Text PDF

As more biological activities of ribonucleic acids continue to emerge, the development of efficient analytical tools for RNA identification and characterization is necessary to acquire an in-depth understanding of their functions and chemical properties. Herein, we demonstrate the capacity of label-free direct surface-enhanced Raman scattering (SERS) analysis to access highly specific structural information on RNAs at the ultrasensitive level. This includes the recognition of distinctive vibrational features of RNAs organized into a variety of conformations (micro-, fully complementary duplex-, small interfering- and short hairpin-RNAs) or characterized by subtle chemical differences (single-base variances, nucleobase modifications and backbone composition).

View Article and Find Full Text PDF

Recognition of chemical modifications in canonical nucleobases of nucleic acids is of key importance since such modified variants act as different genetic encoders, introducing variability in the biological information contained in DNA. Herein, we demonstrate the feasibility of direct SERS in combination with chemometrics and microfluidics for the identification and relative quantification of 4 different cytosine modifications in both single- and double-stranded DNA. The minute amount of DNA required per measurement, in the sub-nanogram regime, removes the necessity of pre-amplification or enrichment steps (which are also potential sources of artificial DNA damages).

View Article and Find Full Text PDF

Exceptionally preserved organic remains are known throughout the vertebrate fossil record, and recently, evidence has emerged that such soft tissue might contain original components. We examined samples from eight Cretaceous dinosaur bones using nano-analytical techniques; the bones are not exceptionally preserved and show no external indication of soft tissue. In one sample, we observe structures consistent with endogenous collagen fibre remains displaying ∼ 67 nm banding, indicating the possible preservation of the original quaternary structure.

View Article and Find Full Text PDF

The standard protocols for DNA analysis largely involve polymerase chain reaction (PCR). However, DNA structures bound to chemical agents cannot be PCR-amplified, and therefore any sequence changes induced by external agents may be neglected. Thus, the development of analytical tools capable of characterizing the biochemical mechanisms associated with chemically induced DNA damage is demanded for the rational design of more effective chemotherapy drugs, understanding the mode of actions of carcinogenic chemicals, and monitoring the genotypic toxicology of environments.

View Article and Find Full Text PDF

The identification of intracellular distributions of noble metal nanoparticles is of great utility for many biomedical applications. We present an effective method to distinguish intracellular from extracellular nanoparticles by selectively quenching the SERS signals from dye molecules adsorbed onto star-shaped gold nanoparticles that have not been internalized by cells.

View Article and Find Full Text PDF

Optical analysis in the near infrared region is of significant biological importance due to better tissue penetration and reduced autofluorescence. In this work, an improved synthesis of hollow gold nanospheres (HGNs), which provides a tunable localized surface plasmon resonance (LSPR) from 610 nm up to 1320 nm, is demonstrated. The scattering properties of these nanoparticles are shown using surface enhanced Raman scattering (SERS) at 1064 nm excitation wavelength and are compared to citrate reduced gold and silver nanoparticles of similar physical sizes and surface properties.

View Article and Find Full Text PDF

Purpose: The Nrf2-ARE pathway plays a cytoprotective role in many tissues,but its protective function in the optic nerve is unclear. The purpose of the study is to investigate the changes in activation of the Nrf2-ARE pathway following optic nerve injury (ONI) in mice.

Methods: Using ONI mice models, the expression levels of Nrf2 in optic nerves were determined by real-time PCR at various time points.

View Article and Find Full Text PDF

Track it down: A recognized surface-enhanced Raman scattering (SERS) nanotag signal was monitored from a thin, dispersed layer of bisphosphonate-functionalized nanotags on a bone sample, through a 20 mm thick specimen of porcine muscle tissue by surface-enhanced spatial offset Raman spectroscopy (SESORS; see picture). The result demonstrates the great potential for non-invasive in vivo bisphosphonate drug tracking.

View Article and Find Full Text PDF

A highly SERS-active substrate was fabricated by trapping gold "nanoworms" on commercially available filter membranes providing significant enhancement of the Raman signal as a result of the remarkable electromagnetic couplings induced by the dense packing. The resultant substrate provides a simple and cost-effective porous SERS surface for use and quantitative analytical procedures.

View Article and Find Full Text PDF