Human extended pluripotent stem cells (EPSCs), with bidirectional chimeric ability to contribute to both embryonic and extraembryonic lineages, can be obtained and maintained by converting conventional pluripotent stem cells using chemicals. However, the transition system is based on inactivated mouse fibroblasts, and the underlying mechanism is not clear. Here we report a Matrigel-based feeder-free method to convert human embryonic stem cells and induced pluripotent stem cells into EPSCs and demonstrate the extended pluripotency in terms of molecular features, chimeric ability, and transcriptome.
View Article and Find Full Text PDFAutophagy plays an important role in embryo development; however, only limited information is available on how autophagy specifically regulates embryo development, especially under low oxygen culture conditions. In this study we used parthenogenetic activation (PA) of porcine embryos to test the hypothesis that a low oxygen concentration (5%) could promote porcine embryo development by activating autophagy. Immunofluorescence staining revealed that low oxygen tension activated autophagy and alleviated oxidative stress in porcine PA embryos.
View Article and Find Full Text PDFResveratrol (3,5,4'-trihydroxystilbene, RSV) is a natural potential anti-aging polyphenolic compound frequently used as a nutritional supplement against several diseases. However, the underlying mechanisms by which resveratrol regulates postovulatory aging of oocytes are still insufficiently known. In this study, we found that resveratrol could delay postovulatory aging and improve developmental competence of oocytes through activating selective mitophagy in the mouse.
View Article and Find Full Text PDF