With the continuous rise of environmental pollution and energy crisis, the global energy revolution is risen. Development of renewable blue energy based on the emerging promising triboelectric nanogenerators (TENG) has become an important direction of future energy development. The solid-liquid contact triboelectric nanogenerator (TENG) has the advantages of flexible structure, easy manufacture, and long-term stability, which makes it easier to integrate and achieve large-scale conversion of wave mechanical energy.
View Article and Find Full Text PDFTouchless perception technology allows us to acquire information beyond the contact interfaces, making it ideal for scenarios where physical engagements are not possible. Unlike tactile devices, which have so far achieved impressive results, touchless strategies are fascinating yet underdeveloped. We envisage that touchless technologies could be powerful supplements to current haptics.
View Article and Find Full Text PDFThe progress from intelligent interactions and supplemented/augmented reality requires artificial skins to shift from the single-functional tactile paradigm. Dual-responsive sensors that can both detect pre-contact proximal events and tactile pressure levels enrich the perception dimensions and deliver additional cognitive information. Previous dual-responsive sensors show very limited utilizations only in proximity perception or approaching switches.
View Article and Find Full Text PDFArtificial haptic sensors form the basis of touch-based human-interfaced applications. However, they are unable to respond to remote events before physical contact. Some elasmobranch fishes, such as seawater sharks, use electroreception somatosensory system for remote environmental perception.
View Article and Find Full Text PDFThe pursuit to mimic skin exteroceptive ability has motivated the endeavors for epidermal artificial mechanoreceptors. Artificial mechanoreceptors are required to be highly sensitive to capture imperceptible skin deformations and preferably to be self-powered, breathable, lightweight and deformable to satisfy the prolonged wearing demands. It is still struggling to achieve these traits in single device, as it remains difficult to minimize device architecture without sacrificing the sensitivity or stability.
View Article and Find Full Text PDFTriboelectric nanogenerators (TENGs), which hold great promise for sustainably powering wearable electronics by harvesting distributed mechanical energy, are still severely limited by their unsatisfactory power density, small capacitance, and high internal impedance. Herein, a materials optimization strategy is proposed to achieve a high performance of TENGs and to lower the matching impedance simultaneously. A permittivity-tunable electret composite film, .
View Article and Find Full Text PDFSkin sensors are of paramount importance for flexible wearable electronics, which are active in medical diagnosis and healthcare monitoring. Ultrahigh sensitivity, large measuring range, and high skin conformability are highly desirable for skin sensors. Here, an ultrathin flexible piezoresistive sensor with high sensitivity and wide detection range is reported based on hierarchical nanonetwork structured pressure-sensitive material and nanonetwork electrodes.
View Article and Find Full Text PDFLarge-area flexible pressure sensors are of paramount importance for various future applications, such as electronic skin, human-machine interfacing, and health-monitoring devices. Here, a self-powered and large-area integrated triboelectric sensor array (ITSA) based on coupling a triboelectric sensor array and an array chip of CD4066 through a traditional connection is reported. Enabled by a simple and cost-effective fabrication process, the size of the ITSA can be scaled up to 38 × 38 cm .
View Article and Find Full Text PDFTransforming dynamic mechanical interactions into visualized luminescence represents a research frontier in the detection of tactile stimuli. Here, we report a self-powered high-resolution triboelectrification-induced electroluminescence (HR-TIEL) sensor for visualizing the contact profile and dynamic trajectory of a contact object. As dynamic interactions occur, triboelectric charges at the contact interface generate a transient electric field that excites the phosphor.
View Article and Find Full Text PDFA new anthracycline derivative, anthracene-9-imidazoline hydrazone (9-AIH), was synthesized and selected as an antitumor ligand to afford a copper(II) complex of 9-AIH, cis-[Cu(II)Cl2(9-AIH)] (1). Complex 1 was structurally characterized by IR, elemental analysis, ESI-MS and single crystal X-ray diffraction analysis. By MTT assay, it was revealed that 1 showed overall a higher in vitro cytotoxicity than 9-AIH towards a panel of human tumour cell lines, with IC50 values from 0.
View Article and Find Full Text PDF