Annu Int Conf IEEE Eng Med Biol Soc
November 2021
Brain imaging using conventional head coils presents several problems in routine magnetic resonance (MR) examination, such as anxiety and claustrophobic reactions during scanning with a head coil, photon attenuation caused by the MRI head coil in positron emission tomography (PET)/MRI, and coil constraints in intraoperative MRI or MRI-guided radiotherapy. In this paper, we propose a super resolution generative adversarial (SRGAN-VGG) network-based approach to enhance low-quality brain images scanned with body coils. Two types of T1 fluid-attenuated inversion recovery (FLAIR) images scanned with different coils were obtained in this study: joint images of the head-neck coil and digital surround technology body coil (H+B images) and body coil images (B images).
View Article and Find Full Text PDFBackground: Hudi enteric-coated capsule (HDC) is a Chinese medicine prescribed to treat ulcerative colitis (UC). However, its anti-inflammatory active ingredients and mechanisms remain unknown. This study aimed to investigate the active components of HDC and explore its potential mechanisms against UC by integrating network pharmacology and experimental verification.
View Article and Find Full Text PDFObjectives: To observe the age-related changes of sulfated glycosaminoglycan (sGAG) content of hip joint cartilage of elderly people based on Equilibrium Partitioning of an Ionic Contrast Agent (EPIC) micro-CT.
Methods: Seventy human hip cartilage-bone samples were collected from hip-fracture patients (ages 51-96) and divided into five groups (10 years in an age group). They were first immersed in 20% concentration of the contrast agent Meglumine Diatrizoate (MD) for 6 h at 37 °C, and then scanned by micro-CT.
BMC Musculoskelet Disord
October 2013
Background: Articular cartilage is a solid-fluid biphasic material covering the bony ends of articulating joints. Hydration of articular cartilage is important to joint lubrication and weight-wearing. The aims of this study are to measure the altered hydration behaviour of the proteoglycan-degraded articular cartilage using high-frequency ultrasound and then to investigate the effect of proteoglycan (PG) degradation on cartilage hydration.
View Article and Find Full Text PDFThe purpose of this study was to explore the triphasic mechanical properties of osteoarthritic cartilage with different pathological grades. First, samples of cartilage from rabbits with different stages of osteoarthritis (OA) were graded. Following this, the cartilage was strained by a swelling experiment, and changes were measured using a high-frequency ultrasound system.
View Article and Find Full Text PDFBackground: Physical loading leads to a deformation of bone microstructure and may influence quantitative ultrasound (QUS) parameters. This study aims at evaluating the effect of physical loading on bone QUS measurement, and further, on the potential of diagnosing osteoporosis using QUS method under physical loading condition.
Methods: 16 healthy young females (control group) and 45 postmenopausal women (divided into 3 groups according to the years since menopause (YSM)) were studied.
Background: Early diagnosis of osteoarthritis (OA) is essential for preventing further cartilage destruction and decreasing severe complications. The aims of this study are to explore the relationship between OA pathological grades and quantitative acoustic parameters and to provide more objective criteria for ultrasonic microscopic evaluation of the OA cartilage.
Methods: Articular cartilage samples were prepared from rabbit knees and scanned using ultrasound biomicroscopy (UBM).
Sci China Life Sci
November 2011
Subtle changes of articular cartilage (AC) can lead to tissue degeneration and even osteoarthritis (OA). The early degeneration of AC is closely related to a change in proteoglycans (PG) content. The observation of PG is therefore an appropriate way of studying OA and evaluating the degree of AC degeneration.
View Article and Find Full Text PDFDepending on the experimental design, micro-CT can be used to examine bones either in vivo or ex vivo (excised fresh or formalin-fixed). In this study we investigated if differences exist in the variables measured by micro-CT between in vivo and ex vivo scans and which kind of scan is more sensitive to the changes of bone microstructure induced by simulated weightlessness. Rat tail suspension was used to simulate the weightless condition.
View Article and Find Full Text PDF