Publications by authors named "Hai-Hang Cui"

Bubble-driven micromotors have attracted substantial interest due to their remarkable self-motile and cargo-delivering abilities in biomedical or environmental applications. Here, we developed a hollow micromotor that experiences fast self-propulsion underneath an air-liquid interface by periodic bubble growth and collapse. The collapsing of a single microbubble induces a ∼1 m·s impulsive jetting flow that instantaneously pushes the micromotor forward.

View Article and Find Full Text PDF

We present a microfluidic particle-trap array that utilizes negative dielectrophoresis (nDEP) force and hydrodynamic force. The traps are located at the stagnation points of cylindrical pillars arranged in a regular array, and they can function as both single-particle traps (capable of discriminating particles based on size) and multiparticle traps (capable of controlling the number of particles trapped). By adjusting the relative strength of the nDEP and hydrodynamic forces, we are able to control the number of trapped particles accurately.

View Article and Find Full Text PDF

In this paper, we introduce a dielectrophoresis (DEP)-based separation method that allows for tunable multiplex separation of particles. In traditional DEP separations where the field is applied continuously, size-based separation of particles uses the cubic dependence of the DEP force on particle radius, causing large particles to be retained while small particles are released. Here we show that by pulsing the DEP force in time, we are able to reverse the order of separation (eluting the large particles while retaining the small ones), and even extract mid-size particles from a heterogeneous population in one step.

View Article and Find Full Text PDF