Background: Lymphatic collecting vessels in the kidney are critical in clearing interstitial fluid, macromolecules, and infiltrating immune cells. Dysfunction of the lymphatic vessels can disrupt this process and exacerbate injury-associated inflammation in many disease conditions. We previously found that sodium accumulates within the kidney interstitium during proteinuric kidney injury and elevated sodium environments stimulate isolevuglandin production in antigen-presenting cells, stimulating T cells, and modulating inflammatory responses.
View Article and Find Full Text PDFThe intricate relationship between tubular injury and glomerular dysfunction in kidney diseases has been a subject of extensive research. While the impact of glomerular injury on downstream tubules has been well-studied, the reverse influence of tubular injury on the glomerulus remains less explored. This paper provides a comprehensive review of recent advances in the field, focusing on key pathways and players implicated in the pathogenesis of tubular injury on glomerular dysfunction.
View Article and Find Full Text PDFKidney disease is associated with adverse consequences in many organs beyond the kidney, including the heart, lungs, brain, and intestines. The kidney-intestinal cross talk involves intestinal epithelial damage, dysbiosis, and generation of uremic toxins. Recent studies reveal that kidney injury expands the intestinal lymphatics, increases lymphatic flow, and alters the composition of mesenteric lymph.
View Article and Find Full Text PDFExogenous erythropoietin (EPO) is used to treat anemia in patients with chronic kidney disease (CKD). Concerns about the possible adverse effect of EPO on the progression of CKD have been raised owing to nonerythroid cell effects. We investigated the effects of low-dose EPO, independent of correcting anemia, on existing glomerulosclerosis.
View Article and Find Full Text PDFLipoprotein modification by reactive dicarbonyls, including isolevuglandin (IsoLG), produces dysfunctional particles. Kidneys participate in lipoprotein metabolism, including tubular uptake. However, the process beyond the proximal tubule is unclear, as is the effect of kidney injury on this pathway.
View Article and Find Full Text PDFBackground: Despite widespread use of renin-aldosterone-angiotensin system inhibitors and the benefits of lowering glomerular pressure in patients with CKD, there remains a major unmet need for therapies targeting underlying causes of CKD progression. Apoptosis signal-regulating kinase 1 (ASK1) promotes apoptosis and glomerulosclerosis, and is implicated in the progression of diabetic kidney disease (DKD), a major cause of CKD. Selonsertib is a selective ASK1 inhibitor currently in clinical development for the treatment of DKD.
View Article and Find Full Text PDFPurpose Of Review: Kidney disease is a strong modulator of the composition and metabolism of the intestinal microbiome that produces toxins and inflammatory factors. The primary pathways for these harmful factors are blood vessels and nerves. Although lymphatic vessels are responsible for clearance of interstitial fluids, macromolecules, and cells, little is known about whether and how kidney injury impacts the intestinal lymphatic network.
View Article and Find Full Text PDFWe previously found that short-term treatment (week 8 to 12 after injury) with high-dose angiotensin receptor blocker (ARB) induced the regression of existing glomerulosclerosis in 5/6 nephrectomy rats. We therefore assessed the effects of long-term intervention with ARB vs. nonspecific antihypertensives in this study.
View Article and Find Full Text PDFLymphatic vessels are highly responsive to changes in the interstitial environment. Previously, we showed renal lymphatics express the Na-K-2Cl cotransporter. Since interstitial sodium retention is a hallmark of proteinuric injury, we examined whether renal sodium affects NKCC1 expression and the dynamic pumping function of renal lymphatic vessels.
View Article and Find Full Text PDFObjective: Gut flora imbalance characterizes patients with chronic kidney disease (CKD). Although biotic supplementation has been proposed to lessen inflammation and oxidative stress and, thus, reduce the risk of progressive kidney damage and cardiovascular disease, the effects remain controversial. We conducted a meta-analysis to assess the therapeutic benefits of biotics in CKD.
View Article and Find Full Text PDFDecades of epidemiological studies have established the strong inverse relationship between high-density lipoprotein (HDL)-cholesterol concentration and cardiovascular disease. Recent evidence suggests that HDL particle functions, including anti-inflammatory and antioxidant functions, and cholesterol efflux capacity may be more strongly associated with cardiovascular disease protection than HDL cholesterol concentration. These HDL functions are also relevant in non-cardiovascular diseases, including acute and chronic kidney disease.
View Article and Find Full Text PDFKidney disease affects intestinal structure and function. Although intestinal lymphatics are central in absorption and remodeling of dietary and synthesized lipids/lipoproteins, little is known about how kidney injury impacts the intestinal lymphatic network, or lipoproteins transported therein. To study this, we used puromycin aminoglycoside-treated rats and NEP25 transgenic mice to show that proteinuric injury expanded the intestinal lymphatic network, activated lymphatic endothelial cells and increased mesenteric lymph flow.
View Article and Find Full Text PDFPreviously, we found that mild tubulointerstitial injury sensitizes glomeruli to subsequent injury. Here, we evaluated whether stabilization of hypoxia-inducible factor-α (HIF-α), a key regulator of tissue response to hypoxia, ameliorates tubulointerstitial injury and impact on subsequent glomerular injury. Nep25 mice, which express the human CD25 receptor on podocytes under control of the nephrin promotor and develop glomerulosclerosis when a specific toxin is administered were used.
View Article and Find Full Text PDFSimilar to other organs, renal lymphatics remove excess fluid, solutes, and macromolecules from the renal interstitium. Given the kidney's unique role in maintaining body fluid homeostasis, renal lymphatics may be critical in this process. However, little is known regarding the pathways involved in renal lymphatic vessel function, and there are no studies on the effects of drugs targeting impaired interstitial clearance, such as diuretics.
View Article and Find Full Text PDFAlthough the respiratory and immune systems are the major targets of Coronavirus Disease 2019 (COVID-19), acute kidney injury and proteinuria have also been observed. Currently, detailed pathologic examination of kidney damage in critically ill patients with COVID-19 has been lacking. To help define this we analyzed kidney abnormalities in 26 autopsies of patients with COVID-19 by light microscopy, ultrastructural observation and immunostaining.
View Article and Find Full Text PDFFocal segmental glomerulosclerosis (FSGS) presents with scar in parts of some glomeruli and often progresses to global and diffuse glomerulosclerosis. Podocyte injury is the initial target in primary FSGS, induced by a circulating factor. Several gene variants, for example, APOL1, are associated with increased susceptibility to FSGS.
View Article and Find Full Text PDFBackground: Plasminogen activator inhibitor-1 (PAI-1) expression increases extracellular matrix deposition and contributes to interstitial fibrosis in the kidney after injury. While PAI-1 is ubiquitously expressed in the kidney, we hypothesized that interstitial fibrosis is strongly dependent on fibroblast-specific PAI-1 (fbPAI-1).
Methods: Tenascin C Cre (TNC Cre) and fbPAI-1 knockdown (KD) mice with green fluorescent protein (GFP) expressed within the TNC construct underwent unilateral ureteral obstruction and were sacrificed 10 days later.
Tubular injury sensitizes glomeruli to injury. We review potential mechanisms of this tubuloglomerular cross talk. In the same nephron, tubular injury can cause stenosis of the glomerulotubular junction and finally result in atubular glomeruli.
View Article and Find Full Text PDFChronic glomerular injury is associated with eventual development of tubulointerstitial fibrosis. Here we aimed to assess whether, and how, mild chronic tubulointerstitial injury affects glomeruli. For this, we generated mice expressing different toxin receptors, one on their proximal tubular epithelial cells (diphtheria toxin receptor [DTR]) and the other only on podocytes (human CD25 [IL-2R] driven by the nephrin promoter [Nep25]), allowing serial induction of tubule-specific and glomerular (podocyte)-specific injury, respectively.
View Article and Find Full Text PDFChronic kidney disease (CKD) will progress to end stage without treatment, but the decline of renal function may not be linear. Compared with glomerular filtration rate and proteinuria, new surrogate markers, such as kidney injury molecule-1, neutrophil gelatinase-associated protein, apolipoprotein A-IV, and soluble urokinase receptor, may allow potential intervention and treatment in the earlier stages of CKD, which could be useful for clinical trials. New omic-based technologies reveal potential new genomic and epigenomic mechanisms that appear different from those causing the initial disease.
View Article and Find Full Text PDFWe previously observed that high-dose angiotensin receptor blocker (ARB) can induce regression of existing glomerulosclerosis. We also found that proliferator-activated recepto-γ (PPARγ) agonist can attenuate glomerulosclerosis in a nondiabetic model of kidney disease, with specific protection of podocytes. We now assessed effects of combination therapy with ARB and pioglitazone on established glomerulosclerosis.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.