Publications by authors named "Hai-Bo Shang"

Generally, the traditional stationary phase for liquid chromatography is the key part, but with an in situ immutable property, leading to many separation limitations. Based on the former exploration of photosensitive gas chromatography, we successfully prepared a photosensitive monolithic capillary silica column with high light transmission, taking advantage of the reversible cis-trans isomerism of azobenzene. And the cis-trans isomerism has launched an effective, reversible, and precise control on the liquid chromatographic retention behavior just by photoinduction according to the theoretical basis of a good correlation between photoinduction time, -azobenzene ratio, and chromatographic retention factor () ( > 0.

View Article and Find Full Text PDF

The separation and detection of microparticles within complex samples pose substantial challenges due to the intricate variations in size and concentration. A strategy employing gravity-assisted gradient size exclusion principle based on controllable gap sizes on the surface of silicon nanowire arrays (SiNWAs) has been established to achieve the separation of microparticles with diverse sizes. The formation of gradient gap sizes was accomplished by meticulously investigating the impact of oxidation-reduction reactions through metal-assisted chemical etching.

View Article and Find Full Text PDF
Article Synopsis
  • Thin-layer chromatography (TLC) is crucial for quickly screening and identifying specific compounds, but its effectiveness is limited by the fixed properties of the stationary phase.
  • Researchers developed a new type of TLC using a photosensitive material called azo-PTES, which allows for changes in polarity when exposed to certain light wavelengths.
  • This innovation enables reversible separation based on light exposure, offering improved separation efficiency and the potential for multi-dimensional chromatography on a single plate.
View Article and Find Full Text PDF

As we all know, the complexity and diversity of complex sample are confronting with challenge of high-sensitive mass spectrometry analysis, especially direct mass spectrometry. The work proposed a two-dimensional carbon microfiber fractionation (2DμCFs) system for the reduction of ion suppression effects in electrospray ionization mass spectrometry (ESI-MS). The 2DμCFs system can on-line fractionated the complex sample into strong-polar, medium-polar and weak-polar fractions for sequential MS analysis.

View Article and Find Full Text PDF

The development of new technologies for the separation, selection, and isolation of microparticles such as rare target cells, circulating tumor cells, cancer stem cells, and immune cells has become increasingly important in the last few years. Microparticle separation technologies are usually applied to the analysis of disease-associated cells, but these procedures often face a cell separation problem that is often insufficient for single specific cell analyses. To overcome these limitations, a highly accurate size-based microparticle separation technique, herein called "rotating magnetic chromatography", is proposed in this work.

View Article and Find Full Text PDF

A circular nonuniform electric field strategy coupled with gel electrophoresis was proposed to control the precise separation and efficient concentration of nano- and microparticles. The circular nonuniform electric field has the feature of exponential increase in the electric field intensity along the radius, working with three functional zones of migration, acceleration, and concentration. The distribution form of electric field lines is regulated in functional zones to control the migration behaviors of particles for separation and concentration by altering the relative position of the ring electrode (outside) and rodlike electrode (inner).

View Article and Find Full Text PDF

Regrettably, conventional chromatographic columns have immutable polarity, resulting in requirements of at least two columns with polarity difference and sophisticated mechanical switching valves, which hinders the development of "micro-smart" multidimensional tandem chromatography. In this work, light-driven polarity switching was realized in a single capillary column based on the reversible - isomerization of 4-[3-(triethoxysilyl)propoxy]azobenzene as the stationary phase under light irradiation, with the change in dipole moment. As a result, the stationary phase offers precise and dynamic control of polarity based on the - azobenzene ratio, which depends on irradiation wavelength and time.

View Article and Find Full Text PDF

A reciprocating magnetic-field-assisted on-line solid-phase extraction (RMF-SPE) method coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed for continuous enrichment of trace chemicals in water samples. Under the assist of the reciprocating magnetic field, carboxyl-modified magnetic nanoparticles (CMNPs) were applied to prepare microcolumn with even dispersion by periodical motion, instead of traditional compaction as extraction sorbents. When water sample passed through the extraction region, dynamic sorbents generates an advantage of countless contacts between sorbents and targets without blocking for high efficient extraction.

View Article and Find Full Text PDF

Benzene derivatives (BDs) constitute a class of environmental pollutants whose exposure poses a grave risk to human health. These compounds rapidly diffuse from the atmosphere to the marine ecosystem: for this reason, their monitoring in seawater is every day more compelling. In this work, nanoconfined liquid phase nanoextraction (NLPNE), a versatile extraction technique recently described, has been for the first time applied to the gas chromatographic mass spectrometry (GC/MS) analysis of BDs in seawater.

View Article and Find Full Text PDF

Exploring new zeolitic imidazolate frameworks (ZIFs) with specific topologies and pore structures is important for extending applications and improving performances. In this work, a new farfalle-shaped ZIF with an ordered hierarchical structure (named ZIF-F) was easily built with zinc acetate and 2-methylimidazole (MeIm) in an aqueous system at room temperature. The synthesis mechanism of ZIF-F is a dual-induction interaction of a solvent and zinc source based on the synthesis protocol of ZIF-8.

View Article and Find Full Text PDF

New coated carbon fibers (CCFs) have been synthesized, characterized and used as solid phase microextraction (SPME) matrix for the analysis of phytohormones (jasmonic acid, indole-3-acetic acid, and abscisic acid) in wheat samples. The SPME device, realized inserting CCFs in a pencil-type device, when coupled with gas chromatography-mass spectrometry, provides in few steps high recovery values (79-112%), fast on-fiber derivatization (30 s), good method reproducibility (RSD < 20%), low detection limits (0.5-2.

View Article and Find Full Text PDF

Despite the strong antihepatotoxic, antioxidant, and antitumor properties of lignans from Schisandra chinensis, their applications in new drug development, bioscience and functional foods, etc. are limited because of their low abundance and complex coextractions. In this study, a magnetic separation method has been developed based on polyethylenimine-modified magnetic nanoparticles to rapidly and effectively separate and purify the lignans from S.

View Article and Find Full Text PDF

Effective solid-phase microextraction (SPME) of polar phenols from water samples is usually difficult due to the strong interaction between polar phenols and aqueous matrix. Here, we report the fabrication of a metal-organic framework UiO-66 coated stainless steel fiber via physical adhesion for the SPME of polar phenols (phenol, o-cresol, p-cresol, 2,6-dimethylphenol, 2,4-dichlorophenol and 2,6-dichlorophenol) in water samples before gas chromatographic separation with flame ionic detection. Headspace SPME of 10mL sample solution with the fabricated UiO-66 coated fiber gave the enhancement factors of 160 (phenol) - 3769 (2,4-dichlorophenol), and the linear ranges of 1-1000μgL(-1) (2,6-dimethylphenol, 2,4-dichlorophenol and 2,6-dichlorophenol), 1-500μgL(-1) (o-cresol and p-cresol) and 5-500μgL(-1) (phenol).

View Article and Find Full Text PDF