A novel Lewis acid catalyzed tandem cyclization reaction of internal alkynols and vinyl azides has been achieved to afford a series of products containing a pyran-based indeno[1,2-c]isochromene scaffold in moderate to high yields. This tandem polycyclization protocol provides a straightforward entry to construct the complex polycyclic skeleton through cycloisomerization, formal [4 + 2] cycloaddition, and an elimination process.
View Article and Find Full Text PDFChromeno[4,3-b]chromene is a ubiquitous structural motif found in various pharmaceuticals and biologically active compounds. A concise palladium-catalyzed reaction of vinyl iodides and salicyl N-tosylhydrazones has been achieved to afford a series of compounds containing the chromeno[4,3-b]chromene scaffold in moderate to high yield. This tandem reaction involves palladium(II) carbene migratory insertion and intramolecular cyclization assisted by an O nucleophile and tolerates various functional groups.
View Article and Find Full Text PDFA copper(ii) perchlorate-promoted tandem reaction of internal alkynol and salicyl N-tosylhydrazone provides a novel, concise method for constructing isochromeno[3,4-b]chromene in 35-94% yields. The tandem reaction involves cycloisomerization, formal [4+2] cycloaddition and an elimination process.
View Article and Find Full Text PDFA tandem reaction of benzyne with functionalized benzylidenephthalan for the synthesis of a variety of phenanthro[10,1-bc]furans has been achieved for the first time in moderate to good yields. The reaction mechanism involves a Diels–Alder reaction and an intermolecular nucleophilic addition reaction as the key steps.
View Article and Find Full Text PDFThe ruthenium hydride complex RuH(2)(CO)(PPh(3))(3) was found to be an effective catalyst for the cycloaddition reactions of terminal alkynes and azides. In the presence of RuH(2)(CO)(PPh(3))(3), various azides reacted with a range of terminal alkynes to produce 1,4-disubstituted 1,2,3-triazoles with 100% selectivity and moderate to excellent yields.
View Article and Find Full Text PDF